982 resultados para increment rings
Resumo:
Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 µM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 µM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 µM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.
Resumo:
Connexin43 (Cx43) is a major gap junction protein present in the Fischer-344 rat aorta. Previous studies have identified conditions under which selective disruption of intercellular communication with heptanol caused a significant, readily reversible and time-dependent diminution in the magnitude of a1-adrenergic contractions in isolated rat aorta. These observations have indentified a significant role for gap junctions in modulating vascular smooth muscle tone. The goal of these steady-state studies was to utilize isolated rat aortic rings to further evaluate the contribution of intercellular junctions to contractions elicited by cellular activation in response to several other vascular spasmogens. The effects of heptanol were examined (0.2-2.0 mM) on equivalent submaximal (»75% of the phenylephrine maximum) aortic contractions elicited by 5-hydroxytryptamine (5-HT; 1-2 µM), prostaglandin F2a (PGF2a; 1 µM) and endothelin-1 (ET-1; 20 nM). Statistical analysis revealed that 200 µM and 500 µM heptanol diminished the maximal amplitude of the steady-state contractile responses for 5-HT from a control response of 75 ± 6% (N = 26 rings) to 57 ± 7% (N = 26 rings) and 34.9 ± 6% (N = 13 rings), respectively (P<0.05), and for PGF2a from a control response of 75 ± 10% (N = 16 rings) to 52 ± 8% (N = 19 rings) and 25.9 ± 6% (N = 18 rings), respectively (P<0.05). In contrast, 200 µM and 500 µM heptanol had no detectable effect on the magnitude of ET-1-induced contractile responses, which were 76 ± 5.0% for the control response (N = 38 rings), 59 ± 6.0% in the presence of 200 µM heptanol (N = 17 rings), and 70 ± 6.0% in the presence of 500 µM heptanol (N = 23 rings) (P<0.13). Increasing the heptanol concentration to 1 mM was associated with a significant decrease in the magnitude of the steady-state ET-1-induced contractile response to 32 ± 5% (21 rings; P<0.01); further increasing the heptanol concentration to 2 mM had no additional effect. In rat aorta then, junctional modulation of tissue contractility appears to be agonist-dependent.
Resumo:
The vasorelaxant effects of SR 47063 (4-(2-cyanimino-1,2-dihydropyrid-1-yl)-2,2-dimethyl-6-nitrochromene), a new K+-channel opener structurally related to levcromakalim, were examined in isolated human saphenous vein (HSV) and rat aorta (RA). HSV or RA rings were precontracted with either KCl or noradrenaline and cumulative relaxant concentration-response curves were obtained for SR 47063 (0.1 nM to 1 µM) in the presence or absence of 3 µM glibenclamide. SR 47063 potently relaxed HSV and RA precontracted with 20 mM (but not 60 mM) KCl or 10 µM noradrenaline in a concentration-dependent manner, showing slightly greater activity in the aorta. The potency of the effect of SR 47063 on HSV and RA was 12- and 58-fold greater, respectively, than that reported for the structurally related K+-channel opener levcromakalim. The vasorelaxant action of SR 47063 in both blood vessels was strongly inhibited by 3 µM glibenclamide, consistent with a mechanism of action involving ATP-dependent K+-channels.
Resumo:
We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats.
Resumo:
This thesis estimates long-run time variant conditional correlation between stock and bond returns of CIVETS (Colombia, Indonesia, Vietnam, Egypt, Turkey, and South Africa) nations. Further, aims to analyse the presence of asymmetric volatility effect in both asset returns, as well as, obverses increment or decrement in conditional correlation during pre-crisis and crisis period, which lead to make a reliable diversification decision. The Constant Conditional Correlation (CCC) GARCH model of Bollerslev (1990), the Dynamic Conditional Correlation (DCC) GARCH model (Engle 2002), and the Asymmetric Dynamic Conditional Correlation (ADCC) GARCH model of Cappiello, Engle, and Sheppard (2006) were implemented in the study. The analyses present strong evidence of time-varying conditional correlation in CIVETS markets, excluding Vietnam, during 2005-2013. In addition, negative innovation effects were found in both conditional variance and correlation of the asset returns. The results of this study recommend investors to include financial assets from these markets in portfolios, in order to obtain better stock-bond diversification benefits, especially during high volatility periods.
Resumo:
The objective of the present study was to determine the effect of cellulose on intestinal iron absorption in rats during recovery from iron deficiency anemia. Twenty-one-day-old male Wistar-EPM rats were fed an iron-free ration for two weeks to induce anemia. At 5 weeks of age, the rats were divided into two groups (both groups receiving 35 mg of elemental iron per kg diet): cellulose group (N = 12), receiving a diet containing 100 g of cellulose/kg and control (N = 12), receiving a diet containing no cellulose. The fresh weight of the feces collected over a 3-day period between the 15th and 18th day of dietary treatment was 10.7 ± 3.5 g in the group receiving cellulose and 1.9 ± 1.2 g in the control group (P<0.001). Total food intake was higher in the cellulose group (343.4 ± 22.0 g) than in the control (322.1 ± 13.1 g, P = 0.009) during the 3 weeks of dietary treatment. No significant difference was observed in weight gain (cellulose group = 132.8 ± 19.2, control = 128.0 ± 16.3 g), hemoglobin increment (cellulose group = 8.0 ± 0.8, control = 8.0 ± 1.0 g/dl), hemoglobin level (cellulose group = 12.3 ± 1.2, control = 12.1 ± 1.3 g/dl) or in hepatic iron levels (cellulose group = 333.6 ± 112.4, control = 398.4 ± 168.0 µg/g dry tissue). We conclude that cellulose does not adversely affect the regeneration of hemoglobin, hepatic iron level or the growth of rats during recovery from iron deficiency anemia.
Resumo:
Background: Interest in limb defects has grown after the thalidomide tragedy in the 1960s. As a result, congenital malformation registries, monitoring changes in birthprevalence and defect patterns, have been established in several countries. However, there are only a few true population based studies on birth prevalence of upper limb defects. The burden of hospital care among these children, specifically in terms of the number of admissions and total time spent in hospital, is also unknown. Aims and Methods: This study is based on information gathered from the Finnish Register of Congenital malformations (FRM) and the Finnish Hospital Discharge Register (FHDR). A total of 417 children born between 1993 and 2005 with an upper limb defect were gathered from the FRM. The upper limb defects were classified using the International Federation of Societies for Surgery of the Hand -classification that enables comparison with previous and future studies. Birth and live birth prevalence, sex and side distribution, frequency of associated anomalies as well as the proportion of perinatal and infant deaths according to the different subtypes were calculated. The number of hospital admissions, days spent in hospital, number and type of surgical operations were collected from the FHDR. Special features of two subgroups, radial ray defects (RRD) and constriction band syndrome (CBS), were explored. Results: Upper limb defects were observed in 417 of 753 342 consecutive births and in 392 of 750 461 live births. Birth prevalence was 5.5 per 10 000 births and 5.2 per 10 000 live births. Multiple anomalies or a known syndrome was found in 250 cases (60%). Perinatal mortality was 139 per 1000 births and infant mortality 135 per 1000 live births (overall Finnish perinatal mortality <5 per 1000 births and infant mortality 3.7 per 1000 live births). Altogether, 138 infants had RRD and 120 (87%) of these had either a known syndrome or multiple major anomalies. The proportion of perinatal deaths in RRD group was 29% (40/138) and infant deaths 35% (43/123). Fifty-one children had CBS in upper limbs. Fifteen of these (29%) had other major anomalies associated with constriction rings. The number of hospital admissions per year of children with congenital upper limb defects was 11-fold and the time spent in hospital 13-fold as compared with the general paediatric population. Conclusions: Birth prevalence of congenital upper limb defects was 5.5 per 10 000 births and 5.2 per 10 000 live births. RRD was especially associated with other major anomalies and high mortality. Nearly one third of the children with CBS also had other major anomalies suggesting different aetiologies inside the group. The annual burden of hospital care of children with congenital upper limb defects was at least 11-fold as compared with the general paediatric population.
Resumo:
To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.
Resumo:
The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.
Resumo:
The vasorelaxing activity of rotundifolone (ROT), a major constituent (63.5%) of the essential oil of Mentha x villosa, was tested in male Wistar rats (300-350 g). In isolated rat aortic rings, increasing ROT concentrations (0.3, 1, 10, 100, 300, and 500 µg/ml) inhibited the contractile effects of 1 µM phenylephrine and of 80 or 30 mM KCl (IC50 values, reported as means ± SEM = 184 ± 6, 185 ± 3 and 188 ± 19 µg/ml, N = 6, respectively). In aortic rings pre-contracted with 1 µM phenylephrine, the smooth muscle-relaxant activity of ROT was inhibited by removal of the vascular endothelium (IC50 value = 235 ± 7 µg/ml, N = 6). Furthermore, ROT inhibited (pD2 = 6.04, N = 6) the CaCl2-induced contraction in depolarizing medium in a concentration-dependent manner. In Ca2+-free solution, ROT inhibited 1 µM phenylephrine-induced contraction in a concentration-dependent manner and did not modify the phasic contractile response evoked by caffeine (20 mM). In conclusion, in the present study we have shown that ROT produces an endothelium-independent vasorelaxing effect in the rat aorta. The results further indicated that in the rat aorta ROT is able to induce vasorelaxation, at least in part, by inhibiting both: a) voltage-dependent Ca² channels, and b) intracellular Ca2+ release selectively due to inositol 1,4,5-triphosphate activation. Additional studies are required to elucidate the mechanisms underlying ROT-induced relaxation.
Resumo:
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Resumo:
A long-standing debate in the literature is whether attention can form two or more independent spatial foci in addition to the well-known unique spatial focus. There is evidence that voluntary visual attention divides in space. The possibility that this also occurs for automatic visual attention was investigated here. Thirty-six female volunteers were tested. In each trial, a prime stimulus was presented in the left or right visual hemifield. This stimulus was characterized by the blinking of a superior, middle or inferior ring, the blinking of all these rings, or the blinking of the superior and inferior rings. A target stimulus to which the volunteer should respond with the same side hand or a target stimulus to which she should not respond was presented 100 ms later in a primed location, a location between two primed locations or a location in the contralateral hemifield. Reaction time to the positive target stimulus in a primed location was consistently shorter than reaction time in the horizontally corresponding contralateral location. This attentional effect was significantly smaller or absent when the positive target stimulus appeared in the middle location after the double prime stimulus. These results suggest that automatic visual attention can focus on two separate locations simultaneously, to some extent sparing the region in between.
Resumo:
Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.
Resumo:
We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae). By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME) was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE)- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks). The n-butanol fraction of LFME (NBF-LFME) produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.
Resumo:
The relaxant effect of the methyl ester of rosuvastatin was evaluated on aortic rings from male Wistar rats (250-300 g, 6 rats for each experimental group) with and without endothelium precontracted with 1.0 µM phenylephrine. The methyl ester presented a slightly greater potency than rosuvastatin in relaxing aortic rings, with log IC50 values of -6.88 and -6.07 M, respectively. Unlike rosuvastatin, the effect of its methyl ester was endothelium-independent. Pretreatment with 10 µM indomethacin did not inhibit, and pretreatment with 1 mM mevalonate only modestly inhibited the relaxant effect of the methyl ester. Nω-nitro-L-arginine methyl ester (L-NAME, 10 µM), the selective nitric oxide-2 (NO-2) inhibitor 1400 W (10 µM), tetraethylammonium (TEA, 10 mM), and cycloheximide (10 µM) partially inhibited the relaxant effect of the methyl ester on endothelium-denuded aortic rings. However, the combination of TEA plus either L-NAME or cycloheximide completely inhibited the relaxant effect. Inducible NO synthase (NOS-2) was only present in endothelium-denuded aortic rings, as demonstrated by immunoblot with methyl ester-treated rings. In conclusion, whereas rosuvastatin was associated with a relaxant effect dependent on endothelium and hydroxymethylglutaryl coenzyme A reductase in rat aorta, the methyl ester of rosuvastatin exhibited an endothelium-independent and only slightly hydroxymethylglutaryl coenzyme A reductase-dependent relaxant effect. Both NO produced by NOS-2 and K+ channels are involved in the relaxant effect of the methyl ester of rosuvastatin.