962 resultados para immigrant physicians
Resumo:
BACKGROUND: Prehospital oligoanalgesia is prevalent among trauma victims, even when the emergency medical services team includes a physician. We investigated if not only patients' characteristics but physicians' practice variations contributed to prehospital oligoanalgesia. METHODS: Patient records of conscious adult trauma victims transported by our air rescue helicopter service over 10 yr were reviewed retrospectively. Oligoanalgesia was defined as a numeric rating scale (NRS) >3 at hospital admission. Multilevel logistic regression analysis was used to predict oligoanalgesia, accounting first for patient case-mix, and then physician-level clustering. The intraclass correlation was expressed as the median odds ratio (MOR). RESULTS: A total of 1202 patients and 77 physicians were included in the study. NRS at the scene was 6.9 (1.9). The prevalence of oligoanalgesia was 43%. Physicians had a median of 5.7 yr (inter-quartile range: 4.2-7.5) of post-graduate training and 27% were female. In our multilevel analysis, significant predictors of oligoanalgesia were: no analgesia [odds ratio (OR) 8.8], National Advisory Committee for Aeronautics V on site (OR 4.4), NRS on site (OR 1.5 per additional NRS unit >4), female physician (OR 2.0), and years of post-graduate experience [>4.0 to ≤5.0 (OR 1.3), >3.0 to ≤4.0 (OR 1.6), >2.0 to ≤3.0 (OR 2.6), and ≤2.0 yr (OR 16.7)]. The MOR was 2.6, and was statistically significant. CONCLUSIONS: Physicians' practice variations contributed to oligoanalgesia, a factor often overlooked in analyses of prehospital pain management. Further exploration of the sources of these variations may provide innovative targets for quality improvement programmes to achieve consistent pain relief for trauma victims.
Resumo:
Objective: The Agency for Healthcare Research and Quality (AHRQ) developed Patient Safety Indicators (PSIs) for use with ICD-9-CM data. Many countries have adopted ICD-10 for coding hospital diagnoses. We conducted this study to develop an internationally harmonized ICD-10 coding algorithm for the AHRQ PSIs. Methods: The AHRQ PSI Version 2.1 has been translated into ICD-10-AM (Australian Modification), and PSI Version 3.0a has been independently translated into ICD-10-GM (German Modification). We converted these two country-specific coding algorithms into ICD-10-WHO (World Health Organization version) and combined them to form one master list. Members of an international expert panel-including physicians, professional medical coders, disease classification specialists, health services researchers, epidemiologists, and users of the PSI-independently evaluated this master list and rated each code as either "include," "exclude," or "uncertain," following the AHRQ PSI definitions. After summarizing the independent rating results, we held a face-to-face meeting to discuss codes for which there was no unanimous consensus and newly proposed codes. A modified Delphi method was employed to generate a final ICD-10 WHO coding list. Results: Of 20 PSIs, 15 that were based mainly on diagnosis codes were selected for translation. At the meeting, panelists discussed 794 codes for which consensus had not been achieved and 2,541 additional codes that were proposed by individual panelists for consideration prior to the meeting. Three documents were generated: a PSI ICD-10-WHO version-coding list, a list of issues for consideration on certain AHRQ PSIs and ICD-9-CM codes, and a recommendation to WHO to improve specification of some disease classifications. Conclusion: An ICD-10-WHO PSI coding list has been developed and structured in a manner similar to the AHRQ manual. Although face validity of the list has been ensured through a rigorous expert panel assessment, its true validity and applicability should be assessed internationally.