997 resultados para imaging software
Resumo:
Background: b-value is the parameter characterizing the intensity of the diffusion weighting during image acquisition. Data acquisition is usually performed with low b value (b~1000 s/mm2). Evidence shows that high b-values (b>2000 s/mm2) are more sensitive to the slow diffusion compartment (SDC) and maybe more sensitive in detecting white matter (WM) anomalies in schizophrenia.Methods: 12 male patients with schizophrenia (mean age 35 +/-3 years) and 16 healthy male controls matched for age were scanned with a low b-value (1000 s/mm2) and a high b-value (4000 s/mm2) protocol. Apparent diffusion coefficient (ADC) is a measure of the average diffusion distance of water molecules per time unit (mm2/s). ADC maps were generated for all individuals. 8 region of interests (frontal and parietal region bilaterally, centrum semi-ovale bilaterally and anterior and posterior corpus callosum) were manually traced blind to diagnosis.Results: ADC measures acquired with high b-value imaging were more sensitive in detecting differences between schizophrenia patients and healthy controls than low b-value imaging with a gain in significance by a factor of 20- 100 times despite the lower image Signal-to-noise ratio (SNR). Increased ADC was identified in patient's WM (p=0.00015) with major contributions from left and right centrum semi-ovale and to a lesser extent right parietal region.Conclusions: Our results may be related to the sensitivity of high b-value imaging to the SDC believed to reflect mainly the intra-axonal and myelin bound water pool. High b-value imaging might be more sensitive and specific to WM anomalies in schizophrenia than low b-value imaging
Resumo:
Purpose: To perform in vivo imaging of the cerebellum with an in-plane resolution of 120 mm to observe its cortical granular and molecular layers by taking advantage of the high signal-to-noise ratio and the increased magnetic susceptibility-related contrast available at high magnetic field strength such as 7 T. Materials and Methods: The study was approved by the institutional review board, and all patients provided written consent. Three healthy persons (two men, one woman; mean age, 30 years; age range, 28-31 years) underwent MR imaging with a 7-T system. Gradient-echo images (repetition time msec/echo time msec, 1000/25) of the human cerebellum were acquired with a nominal in-plane resolution of approximately 120 mum and a section thickness of 1 mm. Results: Structures with dimensions as small as 240 mum, such as the granular and molecular layers in the cerebellar cortex, were detected in vivo. The detection of these structures was confirmed by comparing the contrast obtained on T2*-weighted and phase images with that obtained on images of rat cerebellum acquired at 14 T with 30 mum in-plane resolution. Conclusion: In vivo cerebellar imaging at near-microscopic resolution is feasible at 7 T. Such detailed observation of an anatomic area that can be affected by a number of neurologic and psychiatric diseases, such as stroke, tumors, autism, and schizophrenia, could potentially provide newer markers for diagnosis and follow-up in patients with such pathologic conditions. (c) RSNA, 2010.
Resumo:
Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca(2+)-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca(2+) from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.
Resumo:
This paper examines statistical analysis of social reciprocity at group, dyadic, and individual levels. Given that testing statistical hypotheses regarding social reciprocity can be also of interest, a statistical procedure based on Monte Carlo sampling has been developed and implemented in R in order to allow social researchers to describe groups and make statistical decisions.
Resumo:
Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.
Resumo:
The early diagnostic value of glucose hypometabolism and atrophy as potential neuroimaging biomarkers of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have been extensively explored using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (MRI). The vast majority of previous imaging studies neglected the effects of single factors, such as age, symptom severity or time to conversion in MCI thus limiting generalisability of results across studies. Here, we investigated the impact of these factors on metabolic and structural differences. FDG-PET and MRI data from AD patients (n = 80), MCI converters (n = 65) and MCI non-converters (n = 64) were compared to data of healthy subjects (n = 79). All patient groups were split into subgroups by age, time to conversion (for MCI), or symptom severity and compared to the control group. AD patients showed a strongly age-dependent pattern, with younger patients showing significantly more extensive reductions in gray matter volume and glucose utilisation. In the MCI converter group, the amount of glucose utilisation reduction was linked to the time to conversion but not to atrophy. Our findings indicate that FDG-PET might be more closely linked to future cognitive decline whilst MRI being more closely related to the current cognitive state reflects potentially irreversible damage.
Resumo:
The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.
Resumo:
PURPOSE: The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. METHODS: Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. RESULTS: The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. CONCLUSION: A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309-1314, 2015. © 2014 Wiley Periodicals, Inc.
MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging.
Resumo:
OBJECTIVE: The objective of our study was to investigate the impact of radial k-space sampling and steady-state free precession (SSFP) imaging on image quality in MRI of coronary vessel walls. SUBJECTS AND METHODS: Eleven subjects were examined on a 1.5-T MR system using three high-resolution navigator-gated and cardiac-triggered 3D black blood sequences (cartesian gradient-echo [GRE], radial GRE, and radial SSFP) with identical spatial resolution (0.9 x 0.9 x 2.4 mm3). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and motion artifacts were analyzed. RESULTS: The mean SNR and CNR of the coronary vessel wall were improved using radial imaging and were best using radial k-space sampling combined with SSFP imaging. Vessel border definition was similar for all three sequences. Radial k-space sampling was found to be less sensitive to motion. Consistently good image quality was seen with the radial GRE sequence. CONCLUSION: Radial k-space sampling in MRI of coronary vessel walls resulted in fewer motion artifacts and improved SNR and CNR. The use of SSFP imaging, however, did not result in improved coronary vessel wall visualization.
Resumo:
Abstract
Resumo:
PURPOSE: (18)F-Fluorocholine (FCH) and (11)C-acetate (ACE) PET are widely used for detection of recurrent prostate cancer (PC). We present the first results of a comparative, prospective PET/CT study of both tracers evaluated in the same patients presenting with recurrence and low PSA to compare the diagnostic information provided by the two tracers. METHODS: The study group comprised 23 patients studied for a rising PSA level after radical prostatectomy (RP, 7 patients, PSA ≤ 3 ng/ml), curative radiotherapy (RT, 7 patients, PSA ≤ 5 ng/ml) or RP and salvage RT (9 patients, PSA ≤ 5 ng/ml). Both FCH and ACE PET/CT scans were performed in a random sequence a median of 4 days (range 0 to 11 days) apart. FCH PET/CT was started at injection (307 ± 16 MBq) with a 10-min dynamic acquisition of the prostate bed, followed by a whole-body PET scan and late (45 min) imaging of the pelvis. ACE PET/CT was performed as a double whole-body PET scan starting 5 and 22 min after injection (994 ± 72 MBq), and a late view (45 min) of the prostate bed. PET/CT scans were blindly reviewed by two independent pairs of two experienced nuclear medicine physicians, discordant subgroup results being discussed to reach a consensus for positive, negative end equivocal results. RESULTS: PET results were concordant in 88 out of 92 local, regional and distant findings (Cohen's kappa 0.929). In particular, results were concordant in all patients concerning local status, bone metastases and distant findings. Lymph-node results were concordant in 19 patients and different in 4 patients. On a per-patient basis results were concordant in 22 of 23 patients (14 positive, 5 negative and 3 equivocal). In only one patient was ACE PET/CT positive for nodal metastases while FCH PET/CT was overall negative; interestingly, the ACE-positive and FCH-negative lymph nodes became positive in a second FCH PET/CT scan performed a few months later. CONCLUSION: Overall, ACE and FCH PET/CT showed excellent concordance, on both a per-lesion and a per-patient basis, suggesting that both tracers perform equally for recurrent prostate cancer staging.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.