990 resultados para imaging optics
Resumo:
There has been a long-standing discussion in the literature as to whether core accretion or disk instability is the dominant mode of planet formation. Over the last decade, several lines of evidence have been presented showing that core accretion is most likely the dominant mechanism for the close-in population of planets probed by radial velocity and transits. However, this does not by itself prove that core accretion is the dominant mode for the total planet population, since disk instability might conceivably produce and retain large numbers of planets in the far-out regions of the disk. If this is a relevant scenario, then the outer massive disks of B-stars should be among the best places for massive planets and brown dwarfs to form and reside. In this study, we present high-contrast imaging of 18 nearby massive stars of which 15 are in the B2-A0 spectral-type range and provide excellent sensitivity to wide companions. By comparing our sensitivities to model predictions of disk instability based on physical criteria for fragmentation and cooling, and using Monte Carlo simulations for orbital distributions, we find that ~85% of such companions should have been detected in our images on average. Given this high degree of completeness, stringent statistical limits can be set from the null-detection result, even with the limited sample size. We find that
Resumo:
The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.
Resumo:
We obtained high-resolution, high-contrast optical imaging in the Sloan Digital Sky Survey i′ band with the LuckyCam camera mounted on the 2.56 m Nordic Optical Telescope, to search for faint stellar companions to 16 stars harbouring transiting exoplanets. The Lucky imaging technique uses very short exposures to obtain near diffraction-limited images yielding sub-arcsecond sensitivity, allowing us to search for faint stellar companions within the seeing disc of the primary planet host. Here, we report the detection of two candidate stellar companions to the planet host TrES-1 at separations <6.5 arcsec and we confirm stellar companions to CoRoT-2, CoRoT-3, TrES-2, TrES-4 and HAT-P-7 already known in the literature. We do not confirm the candidate companions to HAT-P-8 found via Lucky imaging by Bergfors et al., however, most probably because HAT-P-8 was observed in poor seeing conditions. Our detection sensitivity limits allow us to place constraints on the spectral types and masses of the putative bound companions to the planet host stars in our sample. If bound, the stellar companions identified in this work would provide stringent observational constraints to models of planet formation and evolution. In addition, these companions could affect the derived physical properties of the exoplanets in these systems.
Resumo:
Core-collapse supernovae (SNe) are the spectacular finale to massive stellar evolution. In this Letter, we identify a progenitor for the nearby core-collapse SN 2012aw in both ground based near-infrared, and space based optical pre-explosion imaging. The SN itself appears to be a normal Type II Plateau event, reaching a bolometric luminosity of 10$^{42}$ erg s$^{-1}$ and photospheric velocities of $\sim$11,000 \kms\ from the position of the H$\beta$ P-Cygni minimum in the early SN spectra. We use an adaptive optics image to show that the SN is coincident to within 27 mas with a faint, red source in pre-explosion HST+WFPC2, VLT+ISAAC and NTT+SOFI images. The source has magnitudes $F555W$=26.70$\pm$0.06, $F814W$=23.39$\pm$0.02, $J$=21.1$\pm$0.2, $K$=19.1$\pm$0.4, which when compared to a grid of stellar models best matches a red supergiant. Interestingly, the spectral energy distribution of the progenitor also implies an extinction of $A_V>$1.2 mag, whereas the SN itself does not appear to be significantly extinguished. We interpret this as evidence for the destruction of dust in the SN explosion. The progenitor candidate has a luminosity between 5.0 and 5.6 log L/\lsun, corresponding to a ZAMS mass between 14 and 26 \msun\ (depending on $A_V$), which would make this one of the most massive progenitors found for a core-collapse SN to date.
Resumo:
We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si.
Resumo:
Arrays of vertically aligned gold nanotubes are fabricated over several square centimetres which display a geometry tunable plasmonic extinction peak at visible wavelengths and at normal incidence. The fabrication method gives control over nanotube dimensions with inner core diameters of 15–30 nm, wall thicknesses of 5–15 nm and nanotube lengths of up to 300 nm. It is possible to tune the position of the extinction peak through the wavelength range 600–900 nm by varying the inner core diameter and wall thickness. The experimental data are in agreement with numerical modelling of the optical properties which further reveal highly localized and enhanced electric fields around the nanotubes. The tunable nature of the optical response exhibited by such structures could be important for various label-free sensing applications based on both refractive index sensing and surface-enhanced Raman scattering.
Resumo:
Objective: The aim of this study was to investigate the effect of pre-treatment verification imaging with megavoltage (MV) X-rays on cancer and normal cell survival in vitro and to compare the findings with theoretically modelled data. Since the dose received from pre-treatment imaging can be significant, incorporation of this dose at the planning stage of treatment has been suggested.
Methods: The impact of imaging dose incorporation on cell survival was investigated by clonogenic assay, irradiating DU-145 prostate cancer, H460 non-small cell lung cancer and AGO-1522b normal tissue fibroblast cells. Clinically relevant imaging-to-treatment times of 7.5 minutes and 15 minutes were chosen for this study. The theoretical magnitude of the loss of radiobiological efficacy due to sublethal damage repair was investigated using the Lea-Catcheside dose protraction factor model.
Results: For the cell lines investigated, the experimental data showed that imaging dose incorporation had no significant impact upon cell survival. These findings were in close agreement with the theoretical results.
Conclusions: For the conditions investigated, the results suggest that allowance for the imaging dose at the planning stage of treatment should not adversely affect treatment efficacy.
Advances in Knowledge: There is a paucity of data in the literature on imaging effects in radiotherapy. This paper presents a systematic study of imaging dose effects on cancer and normal cell survival, providing both theoretical and experimental evidence for clinically relevant imaging doses and imaging-to-treatment times. The data provide a firm foundation for further study into this highly relevant area of research.
Resumo:
Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, transformable and switchable optics. Herein, by precisely controlling the size, symmetry and topology of alphabetical metamaterials with U, S, Y, H, U-bar and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (Vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of electronic and magnetic surface plasmon polaritons, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons thus essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely-propagating light. Based on the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency.
Resumo:
It is demonstrated that the electromagnetic (EM) transmission through a subwavelength or non-resonant aperture in a conductive screen can be dramatically enhanced by loading it with folded metallic strips exhibiting resonant properties. When illuminated by an EM plane wave these loaded apertures enable very tight, subwavelength, collimation of the EM power in the near field zone. We propose planar and quasi-planar resonant insertion geometries that should allow, for the first time, two-dimensional dual-polarization subwavelength field confinement along with ability to focus both electric and magnetic fields. The proposed technique for resonance transmission enhancement and near field confinement forms a basis for a new class of microwave near field imaging probe with subwavelength resolution capable of operating over a wide range of imaging distances (0.05–$0.25lambda$). Measurement results demonstrate the possibility of high contrast (more than 3 dB in amplitude and 40 degrees in phase) near field subwavelength imaging of 2D and 3D resonant and non-resonant metallic and dielectric targets in free space and in moderately lossy layered media.
Resumo:
The overall aim of this study was to assess the accuracy, reproducibility and stability of a high resolution passive stereophotogrammetry system to image a female mannequin torso, to validate measurements made on the textured virtual surface compared with those obtained using manual techniques and to develop an approach to make objective measurements of the female breast. 3D surface imaging was carried out on a textured female torso and measurements made in accordance with the system of mammometrics. Linear errors in measurements were less than 0.5 mm, system calibration produced errors of less than 1.0 mm over 94% over the surface and intra-rater reliability measured by ICC = 0.999. The mean difference between manual and digital curved surface distances was 1.36 mm with maximum and minimum differences of 3.15 mm and 0.02 mm, respectively. The stereophotogrammetry system has been demonstrated to perform accurately and reliably with specific reference to breast assessment. (C) 2011 IPEM. Published by Elsevier Ltd. All rights reserved.