988 resultados para hematite ore
Resumo:
The monograph considers facial conditions of ore-formation in the Central Equatorial Pacific, as well as lithostratigraphy and local variability of bottom sediments. Mineral composition of nodules, forms of occurrence of chemical elements in sediments and nodules, composition of interstitial waters, age of nodules, regularities and processes of ore formation in the radiolarian belt of the Pacific Ocean zone are also under consideration.
Resumo:
Metal-rich sediments were found in the West Philippine Basin at DSDP sites 291 (located about 500 km SW of the Philippine Ridge or Central Basin Fault) and 294/295 (located about 580 km NE of the Philippine Ridge). In both cases the metalliferous deposits constitute a layer, probably Eocene in age, resting directly above the basaltic basement at the bottom of the sediment column. The chemistry of the major (including Fe and Mn) and trace elements (including trace metals, rare earth elements, U and Th) suggest a strong similarity of these deposits to metalliferous deposits produced by hydrothermal activity at oceanic spreading centers. Well-crystallized hematite is a major component of the metal-rich deposits at site 294/295. We infer that the Philippine Sea deposits were formed at some spreading center by hydrothermal processes of metallogenesis, similar to processes occurring at oceanic spreading centers. A locus for their formation might have been the Philippine Ridge (Central Basin Fault), probably an extinct spreading center. We conclude that metallogenesis of the type occurring at oceanic spreading centers can take place also in marginal basins. This has implications for the origin of metal deposits found in some ophiolite complexes, such as those in Luzon (Philippines), which may represent fragments of former marginal basins rather than of oceanic lithosphere.
Resumo:
Lower Cretaceous sediments were sampled for magnetostratigraphy at three sites. ODP Site 765 and DSDP Site 261, in the Argo Abyssal Plain, consist primarily of brownish-red to gray claystone having hematite and magnetite carriers of characteristic magnetization. ODP Site 766, in the Gascoyne Abyssal Plain, consists mainly of dark greenish-gray volcaniclastic turbidites with magnetite as the carrier of characteristic magnetization. Progressive thermal demagnetization (Sites 765 and 261) or alternating field demagnetization (Site 766) yielded well-defined polarity zones and a set of reliable paleolatitudes. Magnetic polarity chrons were assigned to polarity zones using biostratigraphic correlations. Late Aptian chron M"-1"r, a brief reversed-polarity chron younger than MOr, is a narrow, 40-cm feature delimited in Hole 765C. Early Aptian reversed-polarity chron MOr is also present in Hole 765C. Polarity chrons Mir through M3r were observed in the Barremian of all three sites. Valanginian and Hauterivian polarity chrons can be tentatively assigned to polarity zones only in Hole 766A. The paleolatitude of this region remained at 35° to 37°S from the Berriasian through the Aptian. During this interval, there was approximately 16° of clockwise rotation, with the oriented sample suites of Site 765 displaying a Berriasian declination of 307° to an Aptian declination of 323°. These results are consistent with the interpolated Early Cretaceous apparent polar wander for Australia, but indicate that this region was approximately 5? farther north than predicted.
Resumo:
Basalt samples recovered during DSDP Legs 68, 69, and 70 from a 550-meter-thick section in two holes near the Costa Rica Rift (Holes 501 and 504B) were found to contain the following secondary minerals: trioctahedral and dioctahedral smectite, chlorite, mixed-layer clays, talc, hematite, pyrite, foujasite, phillipsite, analcime, natrolite, thomsonite, gyrolite, aragonite, calcite, anhydrite, chalcocite, Fe-hydrosilicate, okenite, apophyllite, actinolite, cristobalite, quartz, and magnesite. A less positive identification of bismutite was made. A mineral rich in Mn and minerals with strong reflections at 12.9 Å and 3.20 Å remain unidentified. Trioctahedral smectite replaces glass and olivine in the basalt groundmass. The other secondary minerals occur in veins. The distribution of the secondary minerals in the basalt section shows both hydrothermal and oxidizing-nonoxidizing zonation. Most of the secondary minerals formed under alkaline, nonoxidizing conditions at temperatures up to 120° C. An acidic regime probably existed in the lowest portion of basalt. Oxidative diagenesis followed nonoxidative diagenesis in the upper part of the section. Oxidative diagenesis is characterized by the absence of celadonite, rare occurrences of dioctahedral smectite, and widespread hematite and phillipsite.
Resumo:
Typomorphic features of the main morphogenetic types of Fe-Mn nodules from the radiolarian belt have been considered on materials from polygons in the Clarion-Clipperton ore province and in the Central Basin of the Pacific Ocean. By character of surfaces, features of internal structure, mineral and chemical compositions, behavior of trace elements at selective leaching three genetic types of nodules have been divided: predominantly sedimentary, diagenetic, and sedimentary diagenetic. Their formation results from mechanism of growth.
Resumo:
The mineralogy, major and trace elements, and neodymium and strontium isotopes of surface sediments in the South China Sea (SCS) are documented with the aim of investigating their applicability in provenance tracing. The results indicate that mineralogical compositions alone do not clearly identify the sources for the bulk sediments in the SCS. The Nd isotopic compositions of the SCS sediments show a clear zonal distribution. The most negative epsilon-Neodymium values were obtained for sediments from offshore South China (-13.0 to -10.7), while those from offshore Indochina are slightly more positive (-10.7 to -9.4). The Nd isotopic compositions of the sediments from offshore Borneo are even higher, with epsilon-Neodymium ranging from -8.8 to -7.0, and the sediments offshore from the southern Philippine Arc have the most positive epsilon-Neodymium values, from -3.7 to +5.3. This zonal distribution in epsilon-Neodymium is in good agreement with the Nd isotopic compositions of the sediments supplied by river systems that drain into the corresponding regions, indicating that Nd isotopic compositions are an adequate proxy for provenance tracing of SCS sediments. Sr isotopic compositions, in contrast, can only be used to identify the sediments from offshore South China and offshore from the southern Philippine Arc, as the 87Sr/86Sr ratios of sediments from other regions overlapped. Similar zonal distributions are also apparent in a La-Th-Sc discrimination diagram. Sediments fromthewestmargin of the SCS, such as those fromBeibuwan Bay, offshore fromHainan Island, offshore from Indochina, and from the Sunda Shelf plot in the same field, while those offshore from the northeastern SCS, offshore from Borneo, and offshore from the southern Philippine Arc plot in distinct fields. Thus, the La-Th-Sc discrimination diagram, coupledwith Nd isotopes, can be used to trace the provenance of SCS sediments. Using this method, we re-assessed the provenance changes of sediments at Ocean Drilling Program (ODP) Site 1148 since the late Oligocene. The results indicate that sediments deposited after 23.8 Ma (above 455 mcd: meters composite depth) were supplied mainly from the eastern South China Block, with a negligible contribution from the interior of the South China Block. Sediments deposited before 26 Ma (beneath 477 mcd) were supplied mainly from the North Palawan Continental Terrane, which may retain the geochemical characteristics of the materials covered on the late Mesozoic granitoids along the coastal South China. For that the North Palawan Continental Terrane is presently located within the southern Philippine Arc but was located close to ODP Site 1148 in the late Oligocene. The weathering products of volcanic material associated with the extension of the SCS ocean crust also contributed to these sediments. The rapid change in sediment source at 26-23.8 Ma probably resulted from a sudden cessation of sediment supply from the North Palawan Continental Terrane. Wesuggest that the North Palawan Continental Terrane drifted southwards alongwith the extension of the SCS ocean crust during that time, and when the basin was large enough, the supply of sediment from the south to ODP Site 1148 at the north slope may have ceased.
Resumo:
Results of comprehensive geological, geophysical and geochemical studies carried out in the Cape Verde Fracture Zone (Central Atlantic) during Cruise 9 of R/V ''Antares'' (1990-1991) are published in the book. Detailed characterization of various bedrock complexes (ultrabasites, gabbroids, dolerites, basalts, metamorphic rocks) is given. Geological conditions of newly found hydrothermal mineralization in the area are described. Problems of ore melts are under consideration. New data on hydrochemical anomalies and heat flow are given. The book contains original materials on sedimentary formations of the area.
Resumo:
Mineral composition and compounds of sediments from the Guaymas Basin.
Resumo:
The monograph gives the first systematic description of ore-bearing guyots from the West Pacific. It is mostly based on data obtained in numerous expeditions of Russian vessels during 1984-1992. Ore deposits located on upper parts of all slopes and tops of the guyots include phosphorites associated with cobalt- and platinum-rich ferromanganese crusts. Location, origin and prospecting of mineral deposits are discussed on the base of new data on metallogenic factors (geodynamics, tectonics, magmatism, sedimentation and morphostructures).
Resumo:
Acid-sulfate alteration of basalt by SO2-bearing volcanic vapors has been proposed as one possible origin for sulfate-rich deposits on Mars. To better define mineralogical signatures of acid-sulfate alteration, laboratory experiments were performed to investigate alteration pathways and geochemical processes during reaction of basalt with sulfuric acid. Pyroclastic cinders composed of phenocrysts including plagioclase, olivine, and augite embedded in glass were reacted with sulfuric acid at 145 °C for up to 137 days at a range of fluid : rock ratios. During the experiments, the phenocrysts reacted rapidly to form secondary products, while the glass was unreactive. Major products included amorphous silica, anhydrite, and Fe-rich natroalunite, along with minor iron oxides/oxyhydroxides (probably hematite) and trace levels of other sulfates. At the lowest fluid : rock ratio, hexahydrite and an unidentified Fe-silicate phase also occurred as major products. Reaction-path models indicated that formation of the products required both slow dissolution of glass and kinetic inhibitions to precipitation of a number of minerals including phyllosilicates and other aluminosilicates as well as Al- and Fe-oxides/oxyhydroxides. Similar models performed for Martian basalt compositions predict that the initial stages of acid-sulfate alteration of pyroclastic deposits on Mars should result in formation of amorphous silica, anhydrite, Fe-bearing natroalunite, and kieserite, along with relict basaltic glass. In addition, analysis of the experimental products indicates that Fe-bearing natroalunite produces a Mössbauer spectrum closely resembling that of jarosite, suggesting that it should be considered an alternative to the component in sulfate-rich bedrocks at Meridiani Planum that has previously been identified as jarosite.
Resumo:
The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.