992 resultados para hair growth
Resumo:
The Rotatary Bridgman method was used to grow ternary InSb(1-x)SBix, crystals. In this method the ampoule was subjected to reversible rotation at a rate of 60rpm. High quality crystals of 8mm diameter and 25mm length were grown with 6.5 atomic percentage of Bi. The grown crystals were characterized employing various techniques such as energy dispersive spectroscopy, x-ray diffraction, differential scanning calorimetery, infrared spectroscopy and Hall measurement.
Resumo:
Pin loaded lug joints fitted with different types of pins are analysed in the presence of cracks at pin-plate interface. An algorithm for finite element contact stress analysis of joints developed earlier to deal with varying partial contact/separation at the pin-plate interface using a marching solution is used in the present analysis. Stress Intensity Factors (SIF) at the crack tips are evaluated using Modified Crack Closure Integral (MCCI) method within the realm of Linear Elastic Fracture Mechanics (LEFM) assumptions. A comparison of fatigue crack growth lives between interference and push fit pin joints is carried out using these SIF's. Results from a finite element analysis on a push fit pin joint are used to fit experimental fatigue crack growth data.
Resumo:
3-(2,3-Dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (DMPP) a potential second harmonic generating (SHG) has been synthesized and grown as a single crystal by the slow evaporation technique at ambient temperature. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. DMPP crystallizes with orthorhombic system with cell parameters a = 20.3106(8)angstrom, b = 4.9574(2)angstrom, c = 13.4863(5)angstrom, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees and space group Pca2(1). The crystals were characterized by FT-IR, thermal analysis, UV-vis-NIR spectroscopy and SHG measurements. Various functional groups present in DMPP were ascertained by FTIR analysis. DMPP is thermally stable up to 80 degrees C and optically transparent in the visible region. The crystal exhibits SHG efficiency comparable to that of KDP. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dense rutile TiO2 nanorods were grown on anatase TiO2 seed layer coated glass substrate by solution technique. The crystalline nature of nanorods has confirmed by transmission electron microscopy. The band gap of the TiO2 seed layer and nanorods were calculated using the UV-vis absorption spectrum and the band gap value of the anatase seed layer and rutile nanorods were 3.39 eV and 3.09 eV respectively. Water contact angle measurements were also made and showed that the contact angle of rutile nanorods was (134 degrees) larger than the seed layer contact angle (93 degrees). The RMS surface roughness of the TiO2 seed layer (0.384 nm) and nanorods film (18.5 nm) were measured by an atomic force microscope and correlated with their contact angle values. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The progesterone-regulated glycoprotein glycodelin-A (GdA), secreted by the decidualized endometrium at high concentrations in primates, inhibits the maternal immune response against fetal antigens and thereby contributes to the tolerance of the semi-allogenic fetus during a normal pregnancy. Our earlier studies demonstrated the ability of GdA to induce an intrinsic apoptotic cascade in CD4 T-lymphocytes and suppress the cytolytic effector function of CD8 T-lymphocytes. In this report, we investigated further into the mechanism of action of GdA controlling perforin and granzyme B expression in CD8 T-lymphocytes and the mechanism of action of GdA leading to lymphocyte death. Flow cytometry analysis was performed to check for the surface expression of interleukin-2 receptor (IL-2R) and intracellular eomesodermin (Eomes) in activated T-lymphocytes, whereas quantitative RTPCR analysis was used to find out their mRNA profile upon GdA treatment. Western analysis was carried out to confirm the protein level of Bax and Bcl-2. GdA reduces the surface expression of the high-affinity IL-2R complex by down-regulating the synthesis of IL-2R (CD25). This disturbs the optimal IL-2 signalling and decreases the Eomes expression, which along with IL-2 directly regulates perforin and granzymes expression. Consequently, the CD8 T-lymphocytes undergo growth arrest and are unable to mature into competent cytotoxic T-lymphocytes. In the CD4 T-lymphocytes, growth factor IL-2 deprivation leads to proliferation inhibition, decreased Bcl-2/enhanced Bax expression, culminating in mitochondrial stress and cell death. GdA spurs cell cycle arrest, loss of effector functions and apoptosis in different T-cell subsets by making T-lymphocytes unable to respond to IL-2.
Resumo:
Deleterious topological-closed-packed (tcp) phases grow in the interdiffusion zone in turbine blades mainly because of the addition of refractory elements such as Mo and W in the Ni- and Co-based superalloys. CoNi/Mo and CoNi/W diffusion couples are prepared to understand the growth mechanism of the phases in the interdiffusion zone. Instead of determining the main and cross-interdiffusion coefficients following the conventional method, we preferred to determine the average effective interdiffusion coefficients of two elements after fixing the composition of one element more or less the same in the interdiffusion zone. These parameters can be directly related to the growth kinetics of the phases and shed light on the atomic mechanism of diffusion. In both systems, the diffusion rate of elements and the phase layer thickness increased because of the addition of Ni in the solid solution phase, probably because of an increase in driving force. On the other hand, the growth rate of the mu phase and the diffusion coefficient of the species decreased because of the addition of Ni. This indicates the change in defect concentration, which assists diffusion. Further, we revisited the previously published Co-Ni-Mo and Co-Ni-W ternary phase diagrams and compared them with the composition range of the phases developed in the interdiffusion zone. Different composition ranges of the tcp phases are found, and corrected phase diagrams are shown. The outcome of this study will help to optimize the concentration of elements in superalloys to control the growth of the tcp phases.
Resumo:
A coupled methodology for simulating the simultaneous growth and motion of equiaxed dendrites in solidifying melts is presented. The model uses the volume-averaging principles and combines the features of the enthalpy method for modeling growth, immersed boundary method for handling the rigid solid-liquid interfaces, and the volume of fluid method for tracking the advection of the dendrite. The algorithm also performs explicit-implicit coupling between the techniques used. A two-dimensional framework with incompressible and Newtonian fluid is considered. Validation with available literature is performed and dendrite growth in the presence of rotational and buoyancy driven flow fields is studied. It is seen that the flow fields significantly alter the position and morphology of the dendrites. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We study the growth kinetics of nanoclusters in solution. There are two generic factors that drive growth: (a) reactions that produce the nanomaterial; and (b) diffusion of the nanomaterial due to chemical-potential gradients. We model the growth kinetics of ZnO nanoparticles via coupled dynamical equations for the relevant order parameters, We study this model both analytically and numerically. We find that there is a crossover in thenanocluster growth law: from L(t) similar to t(1/2) in the reaction-controlled regime to L(t) t(1/3) in the diffusion-controlled regime.
Resumo:
The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components G (I) and G (II) using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio R = -1. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component G (I) since the rate of growth in shear mode is relatively small. The value of Paris exponent m is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.
Resumo:
Scaling laws are represented in power law form and can be utilized to extract the characteristic properties of a new phenomenon with the help of self-similar solutions. In this work, an attempt has been made to propose a scaling law analytically, for plain concrete when subjected to variable amplitude loading. Due to the application of overload on concrete structures, acceleration in the crack growth process takes place. A closed form expression has been developed to capture the acceleration in crack growth rate in conjunction with the principles of dimensional analysis and self-similarity. The proposed model accounts for parameters such as, the tensile strength, fracture toughness, overload effect and the structural size. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between the different parameters involved. The predicted results are compared with experimental crack growth data for variable amplitude loading and are found to capture the overload effect with sufficient accuracy. Through a sensitivity analysis, fracture toughness is found to be the most dominant parameter in accelerating the crack length due to application of overload.
Resumo:
The acoustic emission technique is used for monitoring the fatigue crack growth in plain concrete beams under three-point loading. Variable amplitude loading with step-wise increase in the maximum load is applied. The fatigue crack growth is continuously monitored using six acoustic sensors. The results of load, displacement, crack mouth opening displacement, acoustic events, and acoustic energy are simultaneously acquired during the test. It is seen that a Paris law type of relationship exists between the rate of increase of acoustic emission count per cycle and the stress intensity factor range. Using b-value analysis, different stages of fatigue fracture is explained. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Grain growth during indentation at low temperatures has been taken to imply that grain growth is largely stress induced and athermal in nanometals. Indentation experiments on electrodeposited nano-Ni indicate clearly that the load required for grain growth decreases with an increase in temperature, suggesting strongly that concurrent grain growth is thermally activated. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mechanical properties of ZnS nanowires and thin films are studied as a function of size and growth direction using all-atom molecular dynamics simulations. Using the stress-strain relationship we extract Young's moduli of nanowires and thin films at room temperature. Our results show that Young's modulus of 0001] nanowires has strong size dependence. On the other hand, 01 (1) over bar0] nanowires do not exhibit a strong size dependence of Young's modulus in the size range we have investigated. We provide a microscopic understanding of this behavior on the basis of bond stretching and contraction due to the rearrangement of atoms in the surface layers. The ultimate tensile strengths of the nanowires do not show much size dependence. To investigate the mechanical behavior of ZnS in two dimensions, we calculate Young's modulus of thin films under tensile strain along the 0001] direction. Young's modulus of thin films converges to the bulk value more rapidly than that of the 0001] nanowire.
Resumo:
A steady state kinetic model has been developed for the vapor-liquid-solid growth of Si whiskers or nanowires from liquid catalyst droplets. The steady state is defined as one in which the net injection rate of Si into the droplet is equal to the ejection rate due to wire growth. Expressions that represent specific mechanisms of injection and ejection of Si atoms from the liquid catalyst droplet have been used and their relative importance has been discussed. The analysis shows that evaporation and reverse reaction rates need to be invoked, apart from just surface cracking of the precursor, in order to make the growth rate radius dependent. When these pathways can be neglected, the growth rate become radius independent and can be used to determine the activation energies for the rate limiting step of heterogeneous precursor decomposition. The ejection rates depend on the mechanism of wire growth at the liquid-solid interface or the liquid-solid-vapor triple phase boundary. It is shown that when wire growth is by nucleation and motion of ledges, a radius dependence of growth rate does not just come from the Gibbs-Thompson effect on supersaturation in the liquid, but also from the dependence of the actual area or length available for nucleation. Growth rates have been calculated using the framework of equations developed and compared with experimental results. The agreement in trends is found to be excellent. The same framework of equations has also been used to account for the diverse pressure and temperature dependence of growth rates reported in the literature. © 2012 American Institute of Physics.