994 resultados para hair cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging flow cytometry is an emerging technology that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy. It allows high-throughput imaging of cells with good spatial resolution, while they are in flow. This paper proposes a general framework for the processing/classification of cells imaged using imaging flow cytometer. Each cell is localized by finding an accurate cell contour. Then, features reflecting cell size, circularity and complexity are extracted for the classification using SVM. Unlike the conventional iterative, semi-automatic segmentation algorithms such as active contour, we propose a noniterative, fully automatic graph-based cell localization. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using custom fabricated cost-effective microfluidics-based imaging flow cytometer. The proposed system is a significant development in the direction of building a cost-effective cell analysis platform that would facilitate affordable mass screening camps looking cellular morphology for disease diagnosis. Lay description In this article, we propose a novel framework for processing the raw data generated using microfluidics based imaging flow cytometers. Microfluidics microscopy or microfluidics based imaging flow cytometry (mIFC) is a recent microscopy paradigm, that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy, which allows us imaging cells while they are in flow. In comparison to the conventional slide-based imaging systems, mIFC is a nascent technology enabling high throughput imaging of cells and is yet to take the form of a clinical diagnostic tool. The proposed framework process the raw data generated by the mIFC systems. The framework incorporates several steps: beginning from pre-processing of the raw video frames to enhance the contents of the cell, localising the cell by a novel, fully automatic, non-iterative graph based algorithm, extraction of different quantitative morphological parameters and subsequent classification of cells. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using cost-effective microfluidics based imaging flow cytometer. The cell lines of HL60, K562 and MOLT were obtained from ATCC (American Type Culture Collection) and are separately cultured in the lab. Thus, each culture contains cells from its own category alone and thereby provides the ground truth. Each cell is localised by finding a closed cell contour by defining a directed, weighted graph from the Canny edge images of the cell such that the closed contour lies along the shortest weighted path surrounding the centroid of the cell from a starting point on a good curve segment to an immediate endpoint. Once the cell is localised, morphological features reflecting size, shape and complexity of the cells are extracted and used to develop a support vector machine based classification system. We could classify the cell-lines with good accuracy and the results were quite consistent across different cross validation experiments. We hope that imaging flow cytometers equipped with the proposed framework for image processing would enable cost-effective, automated and reliable disease screening in over-loaded facilities, which cannot afford to hire skilled personnel in large numbers. Such platforms would potentially facilitate screening camps in low income group countries; thereby transforming the current health care paradigms by enabling rapid, automated diagnosis for diseases like cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4(+) and CD8(+) T cells secreting gamma interferon (IFN-gamma) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8(+) T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8(+) PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-alpha) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4(+) T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8(+) T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of four novel neodymium(III) complexes of the formulation Nd(R-tpy)(O-O)(NO3)(2)] (1-4), where R-tpy is 4'-phenyl-2,2': 6', 2''-terpyridine (Ph-tpy; 1, 2) and 4'-ferrocenyl-2,2': 6', 2''-terpyridine (Fc-tpy; 3, 4); O-O is the conjugate base of acetylacetone (Hacac; 1, 3) or curcumin (Hcurc; 2, 4), are synthesized and characterized. The single crystal structure of 1 shows that the complex is a discrete mononuclear species with the Nd(III) centre in a nine coordinate environment provided by a set of O6N3 donor atoms. Complexes 1 and 3 having the simple acac ligand are prepared as control compounds. Complex 4, possessing an appended ferrocenyl (Fc) and the curcumin moiety, is remarkably photocytotoxic to HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 0.7 mu M and 2.1 mu M while being significantly less toxic to MCF-10A normal cells (IC50 = 34 mu M) and in the dark (IC50 > 50 mu M). The phenyl appended complex 2, lacking a ferrocenyl moiety, is significantly less toxic to both the cell lines when compared with 4. Complexes 1 and 3, lacking the photoactive curcumin moiety, do not show any apparent toxicity both in light and in the dark. The cell death is apoptotic in nature and is mediated by the light-induced formation of reactive oxygen species (ROS). Fluorescence imaging experiment with HeLa cells reveals mitochondrial accumulation of complex 4 within 4 h of incubation. The complexes bind to calf thymus (ct) DNA with moderate affinity giving K-b values in the range of 10(4)-10(5) M-1. The curcumin complexes 2 and 4 cleave plasmid supercoiled DNA to its nicked circular form in visible light via O-1(2) and (OH)-O-center dot pathways. The presence of the ferrocenyl moiety is likely to be responsible for the enhanced cellular uptake and photocytotoxicity of complex 4. Thus, the mitochondria targeting complex 4, being remarkably cytotoxic in light but non-toxic in the dark and to normal cells, is a potential candidate for photochemotherapeutic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian cells subjected to conditions of spaceflight and the microgravity environment ofspace; manifest a number of alterations in structure and function. Among the most notable changes incells flown on the Space Shuttle are reduced growth activation and decline in growth rate in the totalpopulation. Other changes include chromosomal aberrations, inhibited locomotion, alteredcytokine production, changes in PKC distribution, and increased apoptos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWNTs) have been proposed for use in many applications and concerns about their potential effect on human health have led to the interest in understanding the interactions between MWNTs and human cells. One important technique is the visualisation of the intracellular distribution of MWNTs. We exposed human macrophage cells to unpurified MWNTs and found that a decrease in cell viability was correlated with uptake of MWNTs due to mainly necrosis. Cells treated with purified MWNTs and the main contaminant Fe(2)O(3) itself yielded toxicity only from the nanotubes and not from the Fe(2)O(3). We used 3-D dark-field scanning transmission electron microscopy (DF-STEM) tomography of freeze-dried whole cells as well as confocal and scanning electron microscopy (SEM) to image the cellular uptake and distribution of unpurified MWNTs. We observed that unpurified MWNTs entered the cell both actively and passively frequently inserting through the plasma membrane into the cytoplasm and the nucleus. These suggest that MWNTs may cause incomplete phagocytosis or mechanically pierce through the plasma membrane and result in oxidative stress and cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokines help to establish cerebral inflammation after ischemia, which comprises a major component of secondary brain injury. The CXCR4 chemokine receptor system induces neural stem cell migration, and hence has been implicated in brain repair. We show that CXCR1 and interleukin-8 also stimulate chemotaxis in murine neural stem cells from the MHP36 cell line. The presence of CXCR1 was confirmed by reverse transcriptase PCR and immunohistochemistry. Interleukin-8 evoked intracellular calcium currents, upregulated doublecortin (a protein expressed by migrating neuroblasts), and elicited positive chemotaxis in vitro. Therefore, effectors of the early innate immune response may also influence brain repair mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly porous ultralightweight cellular metal foams with open cells have attractive mechanical, thermal, acoustic and other properties and are currently being exploited for high-temperature applications (e.g. acoustic liners for combustion chambers). In such circumstances, thermal radiation in the metal foam becomes a significant mechanism of heat transfer. This paper presents results from experimental measurements on radiative transfer in Fe-Cr-Al-Y (a steel-based high-temperature alloy) foams having high porosity (95 per cent) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short-wavelength regime (less than 25 μm). While the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. The effective radiative conductivity of the metal foam is obtained by using the guarded hot-plate apparatus. With the porosity fixed, the effective radiative conductivity increases with increasing cell size and increasing temperature. © IMechE 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a combined experimental and numerical study on natural convection in open-celled metal foams. The effective thermal conductivities of steel alloy (FeCrAlY) samples with different relative densities and cell sizes are measured with the guarded-hot-plate method. To examine the natural convection effect, the measurements are conducted under both vacuum and ambient conditions for a range of temperatures. The experimental results show that natural convection is very significant, accounting for up to 50% of the effective foam conductivity obtained at ambient pressure. This has been attributed to the high porosity (ε > 0.9) and inter-connected open cells of the metal foams studied. Morphological parameters characterizing open-celled FeCrAlY foams are subsequently identified and their cross-relationships are built. The non-equilibrium two-equation energy transfer model is employed, and selected calculations show that the non-equilibrium effect between the solid foam skeleton and air is significant. The study indicates that the combined parameter, i.e., the porous medium Rayleigh number, is no longer appropriate to correlate natural convection by itself when the Darcy number is sufficiently large as in the case of natural convection in open-celled metal foams. Good agreement between model predictions and experimental measurements is obtained. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120°C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO2 and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement. © 2010 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results from experimental measurements on radiative transfer in FeCrAlY (a steel based high temperature alloy) foams having high porosity (95%) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short wavelength regime (<25 μm). Whilst the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. An analytical model based on geometric optics laws, diffraction theory and metal foam morphology is developed to predict the radiative transfer, with cell size (or cell ligament diameter) and porosity identified as the two key parameters that dictate the foam radiative properties. Close agreement between the predicted effective foam conductivity due to radiation alone and that measured is observed. At fixed porosity, the radiative conductivity of the metal foam increases with increasing cell size and temperature. © 2004 Elsevier Ltd.All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the functional characterization of BipA, a GTPase that undergoes tyrosine phosphorylation in an enteropathogenic Escherichia coli (EPEC) strain. BipA mutants adhere to cultured epithelial cells but fail to trigger the characteristic cytoskeletal rearrangements found in cells infected with wild-type EPEC. In contrast, increased expression of BipA enhances actin remodelling and results in the hyperformation of pseudopods. BipA appears to be the first example of a new class of virulence regulator, as it also controls flagella-mediated cell motility and resistance to the antibacterial effects of a human host defence protein. Its striking sequence similarity to ribosome-binding elongation factors suggests that it uses a novel mechanism to modulate gene expression.