985 resultados para giant cells
Resumo:
The standard Gibbs energies of formation of SrIrO3, Sr2IrO4 and Sr4IrO6 have been determined in the temperature range from 975 to 1400 K using solid-state cells with (Y2O3) ZrO2 as the electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sr–Ir–O were investigated at 1350 K. The only stable oxide detected along the binary Ir–O was IrO2. Three ternary oxides, SrIrO3, Sr2IrO4 and Sr4IrO6, compositions of which fall on the join SrO–IrO2, were found to be stable. Each of the oxides coexisted with pure metal Ir. Therefore, three working electrodes were prepared consisting of mixtures of Ir+SrO+Sr4IrO6, Ir+Sr4IrO6+Sr2IrO4, and Ir+Sr2IrO4+SrIrO3. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. Used for the measurements was a novel apparatus, in which a buffer electrode was introduced between reference and working electrodes to absorb the electrochemical flux of oxygen through the solid electrolyte. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The standard Gibbs energies of formation of the compounds, obtained from the emf of the cells, can be represented by the following equations: View the MathML sourcem View the MathML source View the MathML source where Δf (ox)Go represents the standard Gibbs energy of formation of the ternary compound from its component binary oxides SrO and IrO2. Based on the thermodynamic information, chemical potential diagrams for the system Sr–Ir–O were developed.
Resumo:
A new design for the solid-state cell incorporating a buffer electrode for high-temperature thermodynamic measurements is presented. The function of the buffer electrode, placed between the reference and working electrodes, is to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevents polarization of the measuring electrode and ensures accurate data. The application of this novel design and its advantages are demonstrated by measurement of the standard Gibbs energies of formation of Nd6Ir2O13 (low-temperature form) and Nd2Ir2O7 in the temperature range from 975 to 1450 K. Yttria-stabilized zirconia is used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system NdIrO were investigated at 1350 K. The two ternary oxides, Nd6Ir2O13 and Nd2Ir2O7, compositions of which fall on the join Nd2O3IrO2, were found to coexist with pure metal Ir. Therefore, two working electrodes were prepared consisting of mixtures of Ir+Nd2O3+Nd6Ir2O13 and Ir+Nd6Ir2O13+ Nd2Ir2O7. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. The standard Gibbs energies of formation (ΔG°f (ox)) of the compounds from their component binary oxides Nd2O3 and IrO2, obtained from the emf of the cells, can be represented by the equations:View the MathML source View the MathML source Based on the thermodynamic information, chemical potential diagrams for the system NdIrO are developed.
Resumo:
Scanning tunneling microscopy was used to study the surface nanostructure of the epitaxial film Nd2/3Sr1/3MnO3 that shows giant magnetoresistance. The surface morphology of the film consists of a number of overlapping platelets of about 30–35 Å diameter that grow at an angle of 35°–45° to the surface normal. The peak to peak height of the platelets are multiples of the c‐axis lattice parameter of 7.85 Å showing that the growth of the platelets takes place by the layer by layer addition of one formula unit. The mean surface roughness is about 10 Å. In the range of a few microns the film exhibits no defects or dislocations. The film is unstable in ambient atmosphere and tends to get covered by an adsorbate layer. Tip‐surface interactions cause the adsorbate to be dislodged exposing the surface nanostructure. The degradation of the film in real time when imaged in air was recorded. The adsorbates increase the surface roughness of the film.
Resumo:
Effect of particle size on the electron transport and magnetic properties of La0.7Ca0.3MnO3 has been investigated. While the ferromagnetic Tc, low field magnetic susceptibility, and insulator‐metal transition are markedly affected by the particle size, the maximum magnetoresistance exhibited by the samples near Tc is not sensitive to the particle size. However, the magnetoresistance at 4.2 K increases with decrease in particle size, suggesting a substantial contribution by the grain boundaries. Preliminary measurements on La0.7Sr0.3MnO3 samples of different particle sizes also corroborate the above conclusions.
Resumo:
In this work composites of poly(3-hexylethiophene) (P3HT) and a thiophene derivative (7, 9-di (thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one) (DTCPA) having donor acceptor architecture (DAD) were prepared. Photovoltaic properties of these hybrid composites were evaluated. DTCPA, which is a highly crystalline organic molecule with wide absorption range, was observed to improve the open circuit voltage of the solar cell. Furthermore, DTCPA crystals acts as a nucleating center and increases the molecular ordering of P3HT in the composite. Improved charge separation efficiency was observed by photoluminescence spectroscopy. Because of high built in potential in these devices, large open circuit voltage was observed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Direct borohydride fuel cells (DBFC) use aqueous alkaline sodium borohydride(NaBH4) as anode fuel to generate electric power with either oxygen or hydrogen peroxide as oxidant. The DBFCs are projected to be very handy for portable power appliances such as laptops and mobile phones in addition to their use in extreme conditions such as underwater and portable military applications. This short review discusses the progress in DBFC research based on electrode materials and membranes.
Resumo:
Overexpression of Notch receptors and ligands has been associated with various cancers and developmental disorders, making Notch a potential therapeutic target. Here, we report characterization of Notch1 monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 and Delta-like4 and consequently, signaling in a dose-dependent manner, the antibodies against EGF repeats 11 to 12 being more effective than those against repeats 13 to 15. These data emphasize the role of EGF repeats 11 to 12 in ligand binding. One of the mAbs, 602.101, which specifically recognizes Notch1, inhibited ligand-dependent expression of downstream target genes of Notch such as HES-1, HES-5, and HEY-L in the breast cancer cell line MDA-MB-231. The mAb also decreased cell proliferation and induced apoptotic cell death. Furthermore, exposure to this antibody reduced CD44(Hi)/CD24(Low) subpopulation in MDA-MB-231 cells, suggesting a decrease in the cancer stem-like cell subpopulation. This was confirmed by showing that exposure to the antibody decreased the primary, secondary, and tertiary mammosphere formation efficiency of the cells. Interestingly, effect of the antibody on the putative stem-like cells appeared to be irreversible, because the mammosphere-forming efficiency could not be salvaged even after antibody removal during the secondary sphere formation. The antibody also modulated expression of genes associated with stemness and epithelial-mesenchymal transition. Thus, targeting individual Notch receptors by specific mAbs is a potential therapeutic strategy to reduce the potential breast cancer stem-like cell subpopulation. Mol Cancer Ther; 11(1); 77-86. (C) 2011 AACR.
Resumo:
Methods which disperse single-walled carbon nanotubes (SWNTs) in water as `debundled', while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol(+)) {Cholest-5en-3 beta-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3 beta-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3 beta-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3 beta-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol(+)) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol(+) to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol(+) suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol(+) complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol(+) formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.
Resumo:
Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. PtRu catalysts supported on MoC, WC, and Vulcan XC-72R are prepared, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro-oxidation are studied by cyclic voltammetry. All the electro-catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide-supported electro-catalysts towards methanol electro-oxidation is found to be higher than carbon-supported catalysts before and after ADT. The study suggests that PtRu/MoC and PtRu/WC catalysts are more durable than PtRu/C. Direct methanol fuel cells (DMFCs) with PtRu/MoC and PtRu/WC anodes also exhibit higher performance than the DMFC with PtRu/C anode.
Resumo:
Histone deacetylase inhibitors (HDIs) have attracted considerable attention as potential drug molecules in tumour biology. In order to optimise chemotherapy, it is important to understand the mechanisms of regulation of histone deacetylase (HDAC) enzymes and modifications brought by various HDIs. In the present study, we have employed Fourier transform infrared microspectroscopy (FT-IRMS) to evaluate modifications in cellular macromolecules subsequent to treatment with various HDIs. In addition to CH3 (methyl) stretching bands at 2872 and 2960 cm1, which arises due to acetylation, we also found major changes in bands at 2851 and 2922 cm1, which originates from stretching vibrations of CH2 (methylene) groups, in valproic acid treated cells. We further demonstrate that the changes in CH2 stretching are concentration-dependent and also induced by several other HDIs. Recently, HDIs have been shown to induce propionylation besides acetylation [1]. Since propionylation involves CH2 groups, we hypothesized that CH2 vibrational frequency changes seen in HDI treated cells could arise due to propionylation. As verification, pre-treatment of cells with propionyl CoA synthetase inhibitor resulted in loss of CH2 vibrational changes in histones, purified from valproic acid treated cells. This was further proved by western blot using propionyl-lysine specific antibody. Thus we demonstrate for the first time that propionylation could be monitored by studying CH2 stretching using IR spectroscopy and further provide a platform for monitoring HDI induced multiple changes in cells. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Although the oxide ceramics have widely been investigated for their biocompatibility, non-oxide ceramics, such as SiAlON and SiC are yet to be explored in detail. Lack of understanding of the biocompatibility restricts the use of these ceramics in clinical trials. It is hence, essential to carry out proper and thorough study to assess cell adhesion, cytocompatibility and cell viability on the non-oxide ceramics for the potential applications. In this perspective, the present research work reports the cytocompatibility of gas pressure sintered SiAlON monolith and SiAlON-SiC composites with varying amount of SIC, using connective tissue cells (L929) and bone cells (Saos-2). The quantification of cell viability using MTT assay reveals the non-cytotoxic response. The cell viability has been found to be cell type dependent. An attempt has been made to discuss the cytocompatibility of the developed composites in the light of SiC content and type of sinter additives. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study dye sensitized solar cells (DSSCs) have been fabricated with a tri-layer photo anode consisting of hydrothermally prepared titania nano tubes (TNT) having a diameter of 9-10 nm and length of several micrometers as outer layer, P25 TiO2 powder as transparent light absorbing middle layer and a compact TiO2 inner layer to improve the adhesion of different layers on a transparent conducting oxide coated substrate. In comparison to cells fabricated using TNTs or P25 alone, the tri-layer DSSCs exhibit an enhanced efficiency of 7.15% with a current density of 17.12 mA cm(-2) under AM 1.5 illumination. The enhancement is attributed to the light scattering generated by TNTs aggregates, reduction in electron transport resistance at the TiO2/dye/electrolyte interface and an improvement in electron life-time. (c) 2012 Elsevier B.V. All rights reserved.