965 resultados para fluorescence probe technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly synthesized and crystalographically characterized napthelene-pyrazol conjugate, 1-(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water-DMSO 5 : 1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and H-1 NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15-20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical-pump terahertz-probe differential transmission measurements of as-prepared single layer graphene (AG) (unintentionally hole dopedwith Fermi energy E-F at similar to -180 meV), nitrogen doping compensated graphene (NDG) with E-F similar to -10 meV, and thermally annealed doped graphene (TAG) are examined quantitatively to understand the opposite signs of photoinduced dynamic terahertz conductivity Delta sigma. It is negative for AG and TAG but positive for NDG. We show that the recently proposed mechanism of multiple generations of secondary hot carriers due to Coulomb interaction of photoexcited carriers with the existing carriers together with the intraband scattering can explain the change of photoinduced conductivity sign and its magnitude. We give a quantitative estimate of Delta sigma in terms of controlling parameters-the Fermi energy E-F and momentum relaxation time tau. Furthermore, the cooling of photoexcited carriers is analyzed using a supercollision model which involves a defect mediated collision of the hot carriers with the acoustic phonons, thus giving an estimate of the deformation potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly designed and structurally characterized cell permeable diformyl-p-cresol based receptor (HL) selectively senses the AsO33- ion up to ca. 4.1 ppb in aqueous media over the other competitive ions at biological pH through an intermolecular H-bonding induced CHEF (chelationenhanced fluorescence) process, established by detailed experimental and theoretical studies. This biofriendly probe is highly competent in recognizing the existence of AsO33- ions in a living organism by developing an image under a fluorescence microscope and useful to estimate the amount of arsenite ions in various water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemically activated reactants were found to facilitate the synthesis of fine powders comprising 200-400 nm range crystallites of BaBi4Ti4O15 at a significantly lower temperature (700 A degrees C) than that of solid-state reaction route. Reactants (CaCO3, Bi2O3 and TiO2) in stoichiometric ratio were ball milled for 48 h to obtain homogeneous mixture. The evolution of the BaBi4Ti4O15 phase was systematically followed using X-ray powder diffraction (XRD) technique. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to probe its structural and microstructural details. The electron diffraction studies established the presence of correlated octahedral rotations and associated long-range polar ordering. High-resolution TEM imaging nevertheless revealed structural inhomogeneities leading to intergrowth defects. Dense BaBi4Ti4O15 ceramics with an average grain size of 0.9 mu m were fabricated using mechanochemically assisted synthesized powders at relatively low temperature (1000 A degrees C). The effect of grain size on the dielectric and relaxor behaviour of BaBi4Ti4O15 ceramics was investigated. Fine-grained ceramics (average grain size similar to 0.9 mu m) showed higher diffusion in phase transition, lower temperature of phase transition, lower Vogel-Fulcher freezing temperature and higher activation energy for the polarization reversal than those for coarse-grained ceramics (average grain size similar to 7 mu m) fabricated via the conventional solid-state reaction route.