962 resultados para film formation
Resumo:
Metallic Ru has been found to coexist separately with CaO, RuO2, and the interoxide phases, Ca2RuO4, Ca3Ru2O7, and CaRuO3, present along the pseudobinary system CaO-RuO2. The standard Gibbs energies of formation (Df((ox))G(o)) of the three calcium ruthenates from their component oxides have been measured in the temperature range 925-1350 K using solid-state cells with yttria-stabilized zirconia as the electrolyte and Ru+RuO2 as the reference electrode. The standard Gibbs energies of formation (Deltaf((ox))G(o)) of the compounds can be represented by Ca2RuO4:Deltaf((ox))G(o)/J mol(-1)=-38,340-6.611 T (+/-120), Ca3Ru2O7 : Df((ox))G(o)/J mol(-1)=-75,910-11.26 T (+/-180), and CaRuO3 : Deltaf((ox))G(o)/J mol(-1)=-35,480-3.844 T(+/-70). The data for Ca2RuO4 corresponds to the stoichiometric composition, which has an orthorhombic structure, space group Pbca, with short c axis ("S'' form). The structural features of the ternary oxides responsible for their mild entropy stabilization are discussed. A three-dimensional oxygen potential diagram for the system Ca-Ru-O is developed as a function of composition and temperature from the results obtained. Using the Neumann-Kopp rule to estimate the heat capacity of the ternary oxides relative to their constituent binary oxides, the standard enthalpies of formation of the three calcium ruthenates from the elements and their standard entropies at 298.15 K are evaluated. (C) 2003 The Electrochemical Society.
Resumo:
Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.