970 resultados para fault model
Resumo:
Better management of knowledge assets has the potential to improve business processes and increase productivity. This fact has led to considerable interest in recent years in the knowledge management (KM) phenomenon, and in the main dimensions that can impact on its application in construction. However, a lack of a systematic way of assessing KM initia-tives’ contribution towards achieving organisational business objectives is evident. This paper describes the first stage of a research project intended to develop, and empirically test, a KM input-process-output framework comprising unique and well-defined theoretical constructs representing the KM process and its internal and external determinants in the context of con-struction. The paper presents the underlying principles used in operationally defining each construct through the use of extant KM literature. The KM process itself is explicitly mod-elled via a number of clearly articulated phases that ultimately lead to knowledge utilisation and capitalisation, which in turn adds value or otherwise to meeting defined business objec-tives. The main objective of the model is to reduce the impact of subjectivity in assessing the contribution made by KM practices and initiatives toward achieving performance improvements.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Fractional mathematical models represent a new approach to modelling complex spatial problems in which there is heterogeneity at many spatial and temporal scales. In this paper, a two-dimensional fractional Fitzhugh-Nagumo-monodomain model with zero Dirichlet boundary conditions is considered. The model consists of a coupled space fractional diffusion equation (SFDE) and an ordinary differential equation. For the SFDE, we first consider the numerical solution of the Riesz fractional nonlinear reaction-diffusion model and compare it to the solution of a fractional in space nonlinear reaction-diffusion model. We present two novel numerical methods for the two-dimensional fractional Fitzhugh-Nagumo-monodomain model using the shifted Grunwald-Letnikov method and the matrix transform method, respectively. Finally, some numerical examples are given to exhibit the consistency of our computational solution methodologies. The numerical results demonstrate the effectiveness of the methods.
Resumo:
This paper proposes that the generational approach to conceptualising first year student learning behaviour, while it has made a very useful contribution to understanding that behaviour, can be expanded upon. The generational approach has an explicit focus on student behaviour and it is suggested that a capability maturity model interpretation may provide a complementary extension of that as it allows an assessment of institutional capability to initiate, plan, manage and evaluate institutional student engagement practices. The development of a Student Engagement, Success and Retention Maturity Model (SESR-MM) is discussed along with Australasian FYE generational data and Australian SESR-MM data.
Resumo:
The perennial issues of student engagement, success and retention in higher education continue to attract attention as the salience of teaching and learning funding and performance measures has increased. This paper addresses the question of the responsibility or place of higher education institutions (HEIs) for initiating, planning, managing and evaluating their student engagement, success and retention programs and strategies. An evaluation of the current situation indicates the need for a sophisticated approach to assessing the ability of HEIs to proactively design programs and practices that enhance student engagement. An approach—the Student Engagement Success and Retention Maturity Model (SESR-MM)—is proposed and its development, current status, and relationship with and possible use in benchmarking are discussed.
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.
Resumo:
Anisotropic damage distribution and evolution have a profound effect on borehole stress concentrations. Damage evolution is an irreversible process that is not adequately described within classical equilibrium thermodynamics. Therefore, we propose a constitutive model, based on non-equilibrium thermodynamics, that accounts for anisotropic damage distribution, anisotropic damage threshold and anisotropic damage evolution. We implemented this constitutive model numerically, using the finite element method, to calculate stress–strain curves and borehole stresses. The resulting stress–strain curves are distinctively different from linear elastic-brittle and linear elastic-ideal plastic constitutive models and realistically model experimental responses of brittle rocks. We show that the onset of damage evolution leads to an inhomogeneous redistribution of material properties and stresses along the borehole wall. The classical linear elastic-brittle approach to borehole stability analysis systematically overestimates the stress concentrations on the borehole wall, because dissipative strain-softening is underestimated. The proposed damage mechanics approach explicitly models dissipative behaviour and leads to non-conservative mud window estimations. Furthermore, anisotropic rocks with preferential planes of failure, like shales, can be addressed with our model.
Resumo:
We examine which capabilities technologies provide to support collaborative process modeling. We develop a model that explains how technology capabilities impact cognitive group processes, and how they lead to improved modeling outcomes and positive technology beliefs. We test this model through a free simulation experiment of collaborative process modelers structured around a set of modeling tasks. With our study, we provide an understanding of the process of collaborative process modeling, and detail implications for research and guidelines for the practical design of collaborative process modeling.
Resumo:
This paper explores the similarities and differences between bicycle and motorcycle crashes with other motor vehicles. If similar treatments can be effective for both bicycle and motorcycle crashes, then greater benefits in terms crash costs saved may be possible for the same investment in treatments. To reduce the biases associated with under-reporting of these crashes to police, property damage and minor injury crashes were excluded. The most common crash type for both bicycles (31.1%) and motorcycles (24.5%) was intersection from adjacent approaches. Drivers of other vehicles were coded most at fault in the majority of two-unit bicycle (57.0%) and motorcycle crashes (62.7%). The crash types, patterns of fault and factors affecting fault were generally similar for bicycle and motorcycle crashes. This confirms the need to combat the factors contributing to failure of other drivers to yield right of way to two-wheelers, and suggest that some of these actions should prove beneficial to the safety of both motorized and non-motorized two-wheelers. In contrast, child bicyclists were more often at fault, particularly in crashes involving a vehicle leaving the driveway or footpath. The greater reporting of violations by riders and drivers in motorcycle crashes also deserves further investigation.
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.