980 resultados para event-driven
Resumo:
We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5×1019 W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.
Resumo:
Neutrons are unique particles to probe samples in many ?elds of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently
limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to
produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers suf?cient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to
produce a forward peaked neutron ?ux with a record yield, on the order of 1010 n=sr. We present results comparing the two acceleration mechanisms and the ?rst short pulse laser generated neutron radiograph.
Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets
Resumo:
Heart rate (HR) has been widely studied as a measure of an individual's response to painful stimuli. It remains unclear whether changes in mean HR or the variability of HR are specifically related to the noxious stimulus (i.e. pain). Neither is it well understood how such changes reflect underlying neurologic control mechanisms that produce these responses, or how these mechanisms change during the first year of life. To study the changes in cardiac autonomic modulation that occur with acute pain and with age during early infancy, the relationship between respiratory activity and short-term variations of HR (i.e. respiratory sinus arrhythmia) was quantified in a longitudinal study of term born healthy infants who underwent a finger lance blood collection at 4 months of age (n = 24) and again at 8 months of age (n = 20). Quantitative respiratory activity and HR were obtained during baseline, lance, and recovery periods. Time and frequency domain analyses from 2.2-min epochs of data yielded mean values, spectral measures of low (0.04-0.15 Hz) and high (0.15-0.80 Hz) frequency power (LF and HF), and the LF/HF ratio. To determine sympathetic and parasympathetic cardiac activity, the transfer relation between respiration and HR was used. At both 4 and 8 months, mean HR increased significantly with the noxious event (p > 0.01). There were age-related differences in the pattern of LF, HF, and LF/HF ratio changes. Although these parameters all decreased (p > 0.01) at 4 months, LF and LF/HF increased at 8 months and at 8 months HF remained stable in response to the noxious stimulus. Transfer gain changes with the lance demonstrated a change from predominant vagal baseline to a sympathetic condition at both ages. The primary finding of this study is that a response to an acute noxious stimulus appears to produce an increase in respiratory-related sympathetic HR control and a significant decrease in respiratory-related parasympathetic control at both 4 and 8 months. Furthermore, with increasing age, the sympathetic and parasympathetic changes appear to be less intense, but more sustained.
Resumo:
Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering. Using a combination of epitaxial growth techniques in conjunction with theoretical approaches, we show the formation of a morphotropic phase boundary through epitaxial constraint in lead-free piezoelectric bismuth ferrite (BiFeO3) films. Electric field-dependent studies show that a tetragonal-like phase can be reversibly converted into a rhombohedral-like phase, accompanied by measurable displacements of the surface, making this new lead-free system of interest for probe-based data storage and actuator applications.
Resumo:
We demonstrate a novel way to actively tune surface plasmons by fabricating plasmonic nanostructures on stretchable elastomeric films. This allows reversible modification of the metal geometry on the nanometer scale. Using 100 nm scale Au nanoparticle dimers whose spacing is stretch-tuned reveals radically different spectral tuning than previously reported for sub-10-nm nanoparticles, but which can be explained by a revised interpretation of existing models. Tuning plasmons in this way offers a much more robust way than lithography to interrogate the physics of localized plasmons and has applications in optimized surface-enhanced luminescence and Raman scattering.
Resumo:
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical
Resumo:
OBJECTIVES: To evaluate the feasibility of an RCT of a pedometer-driven walking program and education/advice to remain active compared with education/advice only for treatment of chronic low back pain (CLBP). METHODS: Fifty-seven participants with CLBP recruited from primary care were randomly allocated to either: (1) education/advice (E, n=17) or (2) education/advice plus an 8-week pedometer-driven walking program (EWP, n=40). Step targets, actual daily step counts, and adverse events were recorded in a walking diary over the 8 weeks of intervention for the EWP group only. All other outcomes (eg, functional disability using the Oswestry Disability Questionnaire (ODQ), pain scores, physical activity (PA) measurement etc.) were recorded at baseline, week 9 (immediately post-intervention), and 6 months in both groups. RESULTS: The recruitment rate was 22% and the dropout rate was lower than anticipated (13% to 18% at 6 mo). Adherence with the EWP was high, 93% (n=37/40) walked for =6 weeks, and increased their steps/day [mean absolute increase in steps/d, 2776, 95% confidence interval (CI), 1996-3557] by 59% (95% CI, 40.73%-76.25%) from baseline. Mean percentage adherence with weekly step targets was 70% (95% CI, 62%-77%). Eight (20%) minor-related adverse events were observed in 13% (5/40) of the participants. The EWP group participants demonstrated an 8.2% point improvement [95% CI, -13 to -3.4] on the ODQ at 6 months compared with 1.6% points [95% CI, -9.3 to 6.1) for the E group (between group d=0.44). There was also a larger mean improvement in pain (d=0.4) and a larger increase in PA (d=0.59) at 6 months in EWP. DISCUSSION: This preliminary study demonstrated that a main RCT is feasible. EWP was safe and produced a real increase in walking; CLBP function and pain improved, and participants perceived a greater improvement in their PA levels. These improvements require confirmation in a fully powered RCT.
Resumo:
Composite Applications on top of SAPs implementation of SOA (Enterprise SOA) enable the extension of already existing business logic. In this paper we show, based on a case study, how Model-Driven Engineering concepts are applied in the development of such Composite Applications. Our Case Study extends a back-end business process which is required for the specific needs of a demo company selling wine. We use this to describe how the business centric models specifying the modified business behaviour of our case study can be utilized for business performance analysis where most of the actions are performed by humans. In particular, we apply a refined version of Model-Driven Performance Engineering that we proposed in our previous work and motivate which business domain specifics have to be taken into account for business performance analysis. We additionally motivate the need for performance related decision support for domain experts, who generally lack performance related skills. Such a support should offer visual guidance about what should be changed in the design and resource mapping to get improved results with respect to modification constraints and performance objectives, or objectives for time.