995 resultados para epoché


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several high-resolution proxy environmental records have been obtained for the last 35 kyr from ODP Hole 658C, a well-studied site ca. 200 km off Cap Blanc, NW Africa. The collective assessment based on the marine proxies (UK'37 SST, contents of TOC and chlorins, Upwelling Radiolarian Index and the percentage of Florisphaera profunda), surprisingly indicates that the last glacial maximum (LGM) was characterized by warmer sea surface temperature (SST), weaker upwelling, and lower marine productivity, compared with the preceding older glacial and subsequent deglaciation periods. Of the terrigenous proxies, the mean grain size of the non-carbonate fraction and the terrigenous alkane content indicate that wind strength and aridity were high. The weaker upwelling at the 658 site during the LGM may have resulted from changes in the strength and direction of the wind systems and/or shifts in the position and geometry of the upwelling cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithobiostratigraphic data indicate that the double reflectors on the seismic profile through Ocean Drilling Program (ODP) Site 1148 represent two unconformities that coincide, respectively, with the lower/upper Oligocene boundary at ~488 mcd, and Oligocene-Miocene boundary at 460 mcd. Two other unconformities, at ~478 and 472 mcd, respectively, were also identified within the upper Oligocene section. Together they erased a sediment record of about 3 Ma from this locality in a period of very active seafloor spreading. The existence of 32.8 Ma marine sediment at the terminated depth (850 mcd) indicates that the initial breakup of the South China Sea (SCS) was probably during 34-33 Ma, close to the Eocene-Oligocene boundary. High sedimentation rates of 60-115 m/my from the much expanded, N350 m lower Oligocene section resulted from rifting and rapid subsidence between 33 and 29 Ma. The mid-Oligocene unconformity at ~28.5 Ma, which also occurred in many parts of the Indo-West Pacific region, was probably related to a significant uplift of the Himalayan-Tibetan Plateau to the west and the initial collision between Indonesia and Australia in the south. A narrowed Indonesian seaway may have accounted for the late Oligocene warming and chalk deposition in the northern South China Sea including the Site 1148 locality. The unconformities and slumps near the Oligocene-Miocene boundary indicate a very unstable tectonic regime, probably corresponding to changes in the rotation of different land blocks and the seafloor spreading ridge from nearly E-W to NE-SW, as recognized earlier at magnetic Anomaly 7. This 25 Ma event also saw the first New Guinea terrane docking at the northern Australian craton. The low sedimentation rate of ~15 m/my in the early to middle Miocene may correspond to another period of rapid seafloor spreading and rapid widespread subsidence that effectively caused sediment source areas to retreat with a rapidly rising sea level. The isostatic nature of these late Oligocene unconformities and slumps with several major collision-uplift events indicate that the rapid changes in the early evolutionary history of the South China Sea were mainly responding to regional tectonic reconfiguration including the uplift-driven southeast extrusion of the Indochina subcontinent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of 40 carbonate core samples - 27 from Site 535, 12 from Site 540, and 1 from Site 538A - have confirmed many of the findings of the Shipboard Scientific Party. The samples, all but one Early to mid-Cretaceous in age (Berriasian to Cenomanian), reflect sequences of cyclically anoxic and oxic depositional environments. They are moderately to very dark colored, dominantly planar-parallel, laminated lime mudstones. Most show the effects of intense mechanical compaction. Visual kerogen characteristics and conventional Rock-Eval parameters indicate that these deep basinal carbonates contain varying mixtures of thermally immature kerogen derived from both marine and terrigenous precursors. However, variations in kerogen chemistry are evident upon analysis of the pyrolysis mass spectral data in conjunction with the other geochemical analyses. Particularly diagnostic is the reduction index, Rl, a measure of H2S produced during pyrolysis. Total organic carbon, TOC, ranges from 0.6 to 6.6%, with an overall average of 2.4%. Average TOCs for these fine-grained mudstones are: late Eocene 2.5% (1 sample), Cenomanian 2.2% (6), Albian 2.0% (10), Aptian 1.3% (1), Barremian-Hauterivian 2.8% (11), late Valanginian 4.8% (3), Berriasian-early Valanginian 1.6% (7). Most of the carbonates have source-potential ratings of fair to very good of predominantly oil-prone to mixed kerogen, with only a few gas-prone samples. The ratings correlate well with the inferred depositional environments, i.e., whether oxic or anoxic. Several new organic-geochemical parameters, especially Rl, based on pyrolysis mass spectrometry of powdered whole-rock samples, support this view. Tar from fractures in laminated to bioturbated limestones of Unit IV (late Valanginian) at 535-58-4, 19-20 cm (530 m sub-bottom) appears to be mature, biodegraded, and of migrated rather than on site indigenous origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book is devoted to fundamental problems of organic geochemistry of ocean sediments. It is based on materials of organic matter and gas studies in cores from DSDP Legs 50 and 64. Experimental results obtained in the Laboratory of Carbon Geochemistry (V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow) take the main part of the book. Evolution of organic matter in specific environment of deep ocean sediments, sources of organic matter in the ocean and methods of their identification based on isotopic analysis and other methods are under discussion. Gas geochemistry in normal conditions of diagenesis, and in conditions under intense heating is studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although they are fossils of uncertain origin, bolboforms are the best calcareous microfossil group for Neogene biostratigraphy in the North Atlantic. Fifty-two Bolboforma species were observed at the Hatton-Rockall Basin in Ocean Drilling Program Holes 982A (26 samples) and 982B (301 samples) and in Deep Sea Drilling Project Hole 116 (71 samples). The sequence investigated spans the interval from lower Miocene to upper Pliocene. Fourteen zones/subzones were identified and correlated with the calcareous nannoplankton zones, the planktonic foraminifer biostratigraphy, and the time (Ma). The last occurrence of the genus Bolboforma can be dated to 2.84 Ma. Different Bolboforma specimens of middle Miocene age, observed in upper Miocene and upper middle Miocene sediments at Site 982, document redeposition of sediment from the Rockall Bank into the Hatton-Rockall Basin during the latest middle Miocene and late Miocene.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 103 occupied five sites on the Galicia margin, northwest of the Iberian Peninsula. Two holes (Holes 637A and 638B) yielded significant Cenozoic sedimentary sections ranging from late Miocene to late Pleistocene in age. From the nannofossil stratigraphy, one hiatus is recognized in Hole 637A (2.35-2.4 Ma), whereas two hiatuses (one at 1.9-2.6 Ma and another at 3.5-3.7 Ma) are recognized in Hole 638B. Sediment-accumulation rates for the Cenozoic portions of these two holes have been calculated based on the nannofossil datums. The abundance ratios of Coccolithus pelagicus to Discoaster brouweri for Hole 637A show relatively low values and small fluctuations from 2.5 to 6.5 Ma but sharply increase and then widely fluctuate beginning at about 2.5 Ma. This may indicate relatively warmer, more stable surface-water temperatures from 2.5 to 6.5 Ma and cooler, variable surface-water temperatures after 2.5 Ma at Site 637. C. pelagicus/D. brouweri ratios from Hole 638B also show a trend of increasing values with time from late Miocene to late Pliocene, but with more fluctuations and a different pattern from that of Hole 637A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to mid-latitude deserts, the properties, formation and evolution of desert pavements and the underlying vesicular layer in Antarctica are poorly understood. This study examines the desert pavements and the vesicular layer from seven soil chronosequences in the Transantarctic Mountains that have developed on two contrasting parent materials: sandstone-dolerite and granite-gneiss. The pavement density commonly ranges from 63 to 92% with a median value of 80% and does not vary significantly with time of exposure or parent material composition. The dominant size range of clasts decreases with time of exposure, ranging from 16-64 mm on Holocene and late Quaternary surfaces to 8-16 mm on surfaces of middle Quaternary and older age. The proportion of clasts with ventifaction increases progressively through time from 20% on drifts of Holocene and late Quaternary age to 35% on Miocene-aged drifts. Desert varnish forms rapidly, especially on dolerite clasts, with nearly 100% cover on surfaces of early Quaternary and older age. Macropitting occurs only on clasts that have been exposed since the Miocene. A pavement development index, based on predominant clast-size class, pavement density, and the proportion of clasts with ventifaction, varnish, and pits, readily differentiated pavements according to relative age. From these findings we judge that desert pavements initially form from a surficial concentration of boulders during till deposition followed by a short period of deflation and a longer period of progressive chemical and physical weathering of surface clasts. The vesicular layer that underlies the desert pavement averages 4 cm in thickness and is enriched in silt, which is contributed primarily by weathering rather than eolian deposition. A comparison is made between desert pavement properties in mid-latitude deserts and Antarctic deserts.