966 resultados para electromagnetic flowmeter
Resumo:
110 p.
Resumo:
The effective refractive index of a kind of granular composite, which consists of granular metallic and magnetic inclusions with different radius embedded in a host medium, is theoretically investigated. Results show that for certain volume fractions of these two inclusions, the negative permittivity peak shifts to low frequency and the peak value increases with increasing radius ratio of the radius of magnetic granulae to that of metallic granulae. Simultaneously, peak value of permeability decreases with the radius ratio, and value peak shifts to high frequency with increasing volume fraction of magnetic inclusion. Therefore, the radius ratio can affect the effective refractive index considerably, and it is found that by adjusting the radius ratio, the refractive index may change between negative and positive values for certain volume fractions of the two inclusions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
151 p.
Resumo:
The full retarded electromagnetic force experienced by swift electrons moving parallel to planar boundaries is revisited, for both metallic and dielectric targets, with special emphasis on the consequences in electron microscopy experiments. The focus is placed on the sign of the transverse force experienced by the electron beam as a function of the impact parameter. For point probes, the force is found to be always attractive. The contribution of the induced magnetic field and the causality requirements of the target dielectric response, given by the Kramers-Kronig (K-K) relations, prove to be crucial issues at small impact parameters. For spatially extended probes, repulsive forces are predicted for close trajectories, in agreement with previous works. The force experienced by the target is also explored, with the finding that in insulators, the momentum associated to Cherenkov radiation (CR) is relevant at large impact parameters.
Resumo:
In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article proposes an interactive teaching sequence introducing the topic of electromagnetic induction. The sequence has been designed based on contributions from physics education research. Particular attention is paid to the relationship between experimental findings (macroscopic level) and theoretical interpretation (microscopic level). An example of the activities that have been designed will also be presented, describing the implementation context and the corresponding findings. Since implementing the sequence, a considerable number of students have a more satisfactory grasp of the electromagnetic induction explicative model. However, difficulties are manifested in aspects that require a multilevel explanation, referring to deep structures where the system description is better defined.