968 resultados para elastic moduli


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A direct procedure for the evaluation of imperfection sensitivity in bifurcation problems is presented. The problems arise in the context of the general theory of elastic stability for discrete structural systems, in which the energy criterion of stability of structures and the total potential energy formulation are employed. In cases of bifurcation buckling the sensitivity of the critical load with respect to an imperfection parameter e is singular at the state given by epsilon =0, so that, a regular perturbation expansion of the solution is not possible. In this work we describe a direct procedure to obtain the relations between the critical loads, the generalized coordinates at the critical state, the eigenvector, and the amplitude of the imperfection, using singular perturbation analysis. The expansions are assumed in terms of arbitrary powers of the imperfection parameter, so that both exponents and coefficients of the expansion are unknown. The solution of the series exponents is obtained by searching the least degenerate solution. The formulation is here applied to asymmetric bifurcations, for which explicit expressions of the coefficients are obtained. The use of the method is illustrated by a simple example, which allows consideration of the main features of the formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents recent results concerning a design methodology used to estimate the positioning deviation for a gantry (Cartesian) manipulator, related mainly to structural elastic deformation of components during operational conditions. The case-study manipulator is classified as gantry type and its basic dimensions are 1,53m x 0,97m x 1,38m. The dimensions used for the calculation of effective workspace due to end-effector path displacement are: 1m x 0,5m x 0,5m. The manipulator is composed by four basic modules defined as module X, module Y, module Z and terminal arm, where is connected the end-effector. Each module controlled axis performs a linear-parabolic positioning movement. The planning path algorithm has the maximum velocity and the total distance as input parameters for a given task. The acceleration and deceleration times are the same. Denavit-Hartemberg parameterization method is used in the manipulator kinematics model. The gantry manipulator can be modeled as four rigid bodies with three degrees-of-freedom in translational movements, connected as an open kinematics chain. Dynamic analysis were performed considering inertial parameters specification such as component mass, inertia and center of gravity position of each module. These parameters are essential for a correct manipulator dynamic modelling, due to multiple possibilities of motion and manipulation of objects with different masses. The dynamic analysis consists of a mathematical modelling of the static and dynamic interactions among the modules. The computation of the structural deformations uses the finite element method (FEM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brittleness is a well-known material characteristic but brittleness of paper is vaguely covered. The objective of this thesis was to characterize the phenomenon and causes around brittleness of paper and to clarify if it is a measurable property. Brittleness of paper was approached from the perspectives of paper physics and paper mills. Brittleness is a property of dry paper and it causes problems at the finishing stages of paper machine. According to paper physics, brittle materials fail in the elastic regime, while ductile materials can locally accumulate a plastic deformation prior to the fracture and they are often able to withstand higher stresses. Brittleness of paper is vastly affected by the surrounding conditions: paper as a hygroscopic material tries to get to the equilibrium. It is also affected by the quality of the pulp used. Measurement techniques can be divided into two categories: based on the viscoelastic behavior of paper and on the exposure to the mechanical stress of sort. The experimental part of the thesis was based on the trials with brittle and non-brittle mill-made LWC papers. It is divided into three parts: strength testing of the brittle and non-brittle papers, analysis of the conditions that may contribute the brittleness and the experimental methods to evaluate brittle behavior. The strength measurements confirmed the influence of the moisture content, but only tensile energy absorption and the fracture toughness measurements provided modest differences between the brittle and non-brittle papers. Versatile analysis of the possible contributing factors resulted into speculation, while the brittle papers contained higher amount of starch, triglycerides and steryl esters. The experimental research proved that the formation, the sensory impression and the variation of local strains may contain the crucial information of paper brittleness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis is devoted to a theoretical study of resonant tunneling phenomena in semiconductor heterostructures and nanostructures. It considers several problems relevant to modern solid state physics. Namely these are tunneling between 2D electron layers with spin-orbit interaction, tunnel injection into molecular solid material, resonant tunnel coupling of a bound state with continuum and resonant indirect exchange interaction mediated by a remote conducting channel. A manifestation of spin-orbit interaction in the tunneling between two 2D electron layers is considered. General expression is obtained for the tunneling current with account of Rashba and Dresselhaus types of spin-orbit interaction and elastic scattering. It is demonstrated that the tunneling conductance is very sensitive to relation between Rashba and Dresselhaus contributions and opens possibility to determine the spin-orbit interaction parameters and electron quantum lifetime in direct tunneling experiments with no external magnetic field applied. A microscopic mechanism of hole injection from metallic electrode into organic molecular solid (OMS) in high electric field is proposed for the case when the molecules ionization energy exceeds work function of the metal. It is shown that the main contribution to the injection current comes from direct isoenergetic transitions from localized states in OMS to empty states in the metal. Strong dependence of the injection current on applied voltage originates from variation of the number of empty states available in the metal rather than from distortion of the interface barrier. A theory of tunnel coupling between an impurity bound state and the 2D delocalized states in the quantum well (QW) is developed. The problem is formulated in terms of Anderson-Fano model as configuration interaction between the carrier bound state at the impurity and the continuum of delocalized states in the QW. An effect of this interaction on the interband optical transitions in the QW is analyzed. The results are discussed regarding the series of experiments on the GaAs structures with a -Mn layer. A new mechanism of ferromagnetism in diluted magnetic semiconductor heterosructures is considered, namely the resonant enhancement of indirect exchange interaction between paramagnetic centers via a spatially separated conducting channel. The underlying physical model is similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction; however, an important difference relevant to the low-dimensional structures is a resonant hybridization of a bound state at the paramagnetic ion with the continuum of delocalized states in the conducting channel. An approach is developed, which unlike RKKY is not based on the perturbation theory and demonstrates that the resonant hybridization leads to a strong enhancement of the indirect exchange. This finding is discussed in the context of the known experimental data supporting the phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to research how slurry’s viscosity and rheology affect to pumping in peristaltic hose pump and in eccentric progressive cavity pump. In addition, it was researched the formed pressure pulsation in hose pump. Pressure pulsation was studied by pumping different slurries and by using different pipe materials. Pressure and power curves were determined for both used pumps. It was also determined NPSHR curve for the progressive cavity pump. Literature part of the thesis considered to distribute fluids to different rheology types, as well as theories and models to identify different rheology types. Special attention was paid to non-Newtonian fluids, which were also used in experimental part of this thesis. In addition, the literature part discusses about pumps, parameters for pump sizing, and pressure pulsation in hose pump. Starch, bentonite, and carboxymethyl cellulose slurries were used in the experimental part of this thesis. The slurries were pumped with Flowrox peristaltic hose pump (LPP-T32) and eccentric progressive cavity pump (C10/10). From the each slurry was taken a sample, and the samples were analyzed for concentration, viscosity and rheology type. The used pipe materials in pressure pulsation experiments were steel and elastic, and it was also used a prototype of pulsation dampener. The pulsation experiments indicated that the elastic pipe and the prototype of pulsation dampener attenuated pressure pulsation better than the steel pipe at low pressure levels. The differences between different materials disappeared when pressure level and pump rotation speed increased. In slurry experiments, pulsation was different depending on rheology and viscosity of the slurry. According to experiments, the rheology did not significantly affect to pump power consumption or efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.