996 resultados para dual fuel
Resumo:
The majority of the kinetic models employed in catalytic after-treatment of exhaust emissions use a global kinetic approach owing to the simplicity because one expression can account for all the steps in a reaction. The major drawback of this approach is the limited predictive capabilities of the models. The intrinsic kinetic approach offers much more information about the processes occurring within the catalytic converter; however, it is significantly more complex and time consuming to develop. In the present work, a methodology which allows accessing a model that combines the simplicity of the global kinetic approach and the accuracy of the intrinsic kinetic approach is reported. To assess the performance of this new approach, the oxidation of carbon monoxide in the presence of nitric oxide as well as a driving cycle was investigated. The modelling of carbon monoxide oxidation with oxygen which utilised the intrinsic kinetic approach with the global kinetic approach was used for the carbon monoxide + nitric oxide reaction (and all remaining reactions for the driving cycle). The comparison of the model results for the dual intrinsic + global kinetic approach with the experimental data obtained for both the reactor and the driving cycle indicate that the dual approach is promising with results significantly better than those obtained with only the global kinetics approach.
Alkali Activated Fuel Ash and Slag Mixes:Optimization Study from Mortars to Concrete Building Blocks
Resumo:
Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (PFA) from a UK power plant, ground granulated blast furnace slag (GGBS) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several PFA and GGBS combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of PFA/GGBS and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from PFA/GGBS combinations.
Resumo:
A novel dual-band printed diversity antenna is proposed and studied. The antenna, which consists of two back-to- back monopoles with symmetric configuration, is printed on a printed circuit board. The effects of some important parameters of the proposed antenna are deeply studied and the design methodology is given. A prototype of the proposed antenna operating at UMTS (1920-2170 MHz) and 2.4-GHz WLAN (2400-2484 MHz) bands is provided to demonstrate the usability of the methodology in dual-band diversity antenna for mobile terminals. In the above two bands, the isolations of the prototype are larger than 13 dB and 16 dB, respectively. The measured radiation patterns of the two monopoles in general cover complementary space regions. The diversity performance is also evaluated by calculating the envelope correlation coefficient, the mean effective gains of the antenna elements and the diversity gain. It is proved that the proposed antenna can provide spatial and pattern diversity to combat multipath fading.
Resumo:
This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities. © 2013 Elsevier B.V.
Resumo:
Reconfigurable bi-state interwoven spiral FSSs are explored in this work. Their switching capability is realized by pin diodes that enable the change of the electromagnetic response between transparent and reflecting modes at the specified frequencies in both singly and dual polarised unit cell configurations. The proposed topologies are single layer FSS with their elements acting also as dc current carrying conductors supplying the bias signal for switching pin diodes between the on and off states, thus avoiding the need of external bias lines that can cause parasitic resonances and affect the response at oblique incidence. The presented simulation results show that such active FSSs have potentially good isolation between the transmission and reflection states, while retaining the substantially subwavelength response of the unit cell with large fractional bandwidths (FBWs) inherent to the original passive FSSs.
Resumo:
Attosecond science is enabled by the ability to convert femtosecond near-infrared laser light into coherent harmonics in the extreme ultraviolet spectral range. While attosecond sources have been utilized in experiments that have not demanded high intensities, substantially higher photon flux would provide a natural link to the next significant experimental breakthrough. Numerical simulations of dual-gas high harmonic generation indicate that the output in the cutoff spectral region can be selectively enhanced without disturbing the single-atom gating mechanism. Here, we summarize the results of these simulations and present first experimental findings to support these predictions. (c) 2012 Optical Society of America
Resumo:
Inter-dealer trading in US Treasury securities is almost equally divided between two electronic trading platforms that have only slight differences in terms of their relative liquidity and transparency. BrokerTec is more active in the trading of 2-, 5-, and 10-year T-notes while eSpeed has more active trading in the 30-year bond. Over the period studied, eSpeed provides a more pre-trade transparent platform than BrokerTec. We examine the contribution to ‘price discovery’ of activity in the two platforms using high frequency data. We find that price discovery does not derive equally from the two platforms and that the shares vary across term to maturity. This can be traced to differential trading activities and transparency of the two platforms.
Resumo:
Globally vehicle operators are experiencing rising fuel costs and increased
running expenses as governments around the world attempt to decrease carbon dioxide emissions and fossil fuel consumption, due to global warming and the drive to reduce dependency on fossil fuels. Recent advances in hybrid vehicle design have made great strides towards more efficient operation, with regenerative braking being widely used to capture otherwise lost energy. In this paper a hybrid series bus is developed a step further, by installing another method of energy capture on the vehicle. In this case, it is in the form of the Organic Rankine Cycle (ORC). The waste heat expelled to the exhaust and coolant streams is recovered and converted to electrical energy which is then stored in the hybrid vehicles batteries. The electrical energy can then be used for the auxiliary power circuit or to assist in vehicle propulsion, thus reducing the load on the engine, thereby improving the overall fuel economy of the vehicle and reducing carbon dioxide emissions.
Resumo:
Two ionic liquids, 1-ethylpyridinium docusate (IL1) and tri-n-butyl(2-hydroxyethyl)phosphonium docusate (IL2), were designed and synthesized with the explicit intention of imparting a combination of plasticization and antimicrobial efficacy when incorporated into medical grade poly(vinyl chloride)s (PVCs). The glass transition (T-g) of PVC can be reduced by >20 degrees C on addition of 15 wt% IL2. Both IL1 and IL2 leached to varying extents from the base PVC resins rendering the surface of the PVCs hydrophilic. The antimicrobial activity of both ILs is related to the presence and concentration of both cationic and anionic component of the ILs leached from the PVC and inversely proportional to the extent of PVC gelation. Blends of the PVCs with IL1 displayed antibacterial activity against almost all Gram-positive bacteria tested, including coagulase-negative Staphylococci (CoNS) and methicillin-resistant Staphylococcus aureus (MRSA), but not with IL2 at low concentration in contrast to our previous study when high concentrations of IL2 were used. The more hydrophilic IL1 when added to PVC retards biofilm formation.
Resumo:
Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ~520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.