965 resultados para dipolar Bose-Einstein condensate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, using the Gauge/gravity duality techniques, we explore the hydrodynamic regime of a very special class of strongly coupled QFTs that come up with an emerging UV length scale in the presence of a negative hyperscaling violating exponent. The dual gravitational counterpart for these QFTs consists of scalar dressed black brane solutions of exactly integrable Einstein-scalar gravity model with Domain Wall (DW) asymptotics. In the first part of our analysis we compute the R-charge diffusion for the boundary theory and find that (unlike the case for the pure AdS (4) black branes) it scales quite non trivially with the temperature. In the second part of our analysis, we compute the eta/s ratio both in the non extremal as well as in the extremal limit of these special class of gauge theories and it turns out to be equal to 1/4 pi in both the cases. These results therefore suggest that the quantum critical systems in the presence of (negative) hyperscaling violation at UV, might fall under a separate universality class as compared to those conventional quantum critical systems with the usual AdS (4) duals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various NixCo1-x alloys (with x varying from 0-60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni-Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni-Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni-Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni-Co alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) are completely miscible below 50 wt % PVDF in the blends. In this work, an attempt was made to understand the fragility/cooperativity relation in glass-forming and crystalline blends of PVDF/PMMA and in the presence of a heteronucleating agent, multiwall carbon nanotubes (CNTs). Hence, three representative blends were chosen: a completely amorphous (10/90 by wt, PVDF/PMMA), on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA), and crystalline (60/40 by wt, PVDF/PMMA) blends. The intermolecular cooperativity/coupling, fragility, and configurational entropy near the glass transition temperature (T-g) were studied using differential scanning calorimetry (DSC) and broadband dielectric relaxation spectroscopy (DRS). It was observed that the blends with higher concentration of PMMA were more fragile (fragility index m = 141) and those with higher concentration of PVDF were more strong (m = 78). Interestingly, the coupling was less in the glass-forming blends (10/90 by wt, PVDF/PMMA) than the crystalline blends as manifested from DRS. This observation was also supported by DSC measurements which reflected that the cooperative rearranging region (CRR) existed over a smaller length scales in fragile blends as compared to strong blends, possibly due to restricted amorphous mobility. This effect was more prominent in the presence of CNTs, in particular for 50/50 (by wt) and 60/40 (by wt) PVDF/PMMA blends. Further, the configurational entropy, as manifested from DRS, decreased significantly in the strong blends in striking contrast to the fragile blends, supported by DSC, which manifested in an increase in the volume of cooperativity in the strong blends. The higher coupling in the crystalline blends can be attributed to good packing of the amorphous regions. While this is understood for crystalline blends (60/40 by wt, PVDF/PMMA), it is envisaged that enhanced dynamic heterogeneity is accountable for increased coupling in the case of blends which are on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA). The latter is also supported by broad relaxations near the T-g in DRS. Interestingly, the intermolecular coupling in the blends in the presence of CNTs has reduced, though the potential energy barrier hindering the rearrangement of CRR is lower than the blends without CNTs. In addition, the amorphous packing is not as effective as the blends without CNTs. This is manifested from reduced volume of cooperativity in particular, for 50/50 (by wt) and 60/40 (by wt) blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the expanding field of nanoengineering and the production of nanocrystals (NCs) with higher quality and tunable size, having reliable theoretical calculations to complement the experimental results is very important. Here we present such a study of CdSe/CdS core-shell NCs using density functional theory, where we focus on dependence of the properties of these NCs on core types and interfaces between the core and the shell, as well as on the core/shell ratio. We show that the density of states and the absorption indices depend rather weakly on the type of interface and core type. We demonstrate that the HOMO wavefunction is mainly localised in the core of the nanocrystal, depending primarily on the core/shell ratio. On the other hand the LUMO wavefunction spreads more into the shell of the nanocrystal, where its confinement in the core is almost the same in each of the studied structural models. Furthermore, we show that the radiative lifetimes decrease with increasing core sizes due to changes in the dipolar overlap integral of the HOMO and LUMO wavefunctions. In addition, the electron-hole Coulomb interaction energies follow a similar pattern as the localisation of the wavefunctions, with the smaller NCs having higher Coulomb interaction energies.