999 resultados para digitised environment
Resumo:
In a rapidly changing world it is essential that we should understand the factors controlling the sustainability of ecosystems. In aquatic ecosystems, both sensitivity and recoverability are influenced strongly by the life cycles of the organisms concerned. The response of individual species to change and their chances of survival in a variable environment can be affected dramatically by the timing and location of disturbances relative to their natural rhythms of fertilisation, dispersal and development. This book illustrates the wide range of issues that must be addressed to understand such relationships. Its purpose is to consider those aspects of life history that make aquatic organisms especially susceptible to (or adaptable to) changing environments -and hence to discuss links between impacts on individuals and the consequent effects on populations and communities.
Resumo:
Environmentally induced change appears to be impacting the recruitment of North Sea herring (Clupea harengus). Despite simultaneously having a large adult population, historically low exploitation, and Marine Stewardship Council accreditation (implying sustainability), there have been an unprecedented 6 sequential years of poor juvenile production (recruitment). Analysis suggests that the poor recruitment arises during the larval overwintering phase, with recent survival rates greatly reduced. Contemporary warming of the North Sea has caused significant changes in the plankton community, and a recently identified regime shift around 2000 shows close temporal agreement with the reduced larval survival. It is, therefore, possible that we are observing the first consequences of this planktonic change for higher trophic levels. There is no indication of a recovery in recruitment in the short term. Fishing mortality is currently outside the agreed management plan, and forecasts show a high risk of the stock moving outside safe biological limits soon, potentially precipitating another collapse of the stock. However, bringing the realized fishing mortality back in line with the management plan would likely alleviate the problem. This illustrates again that recruitment is influenced by more than just spawning-stock biomass, and that changes in other factors can be of equal, or even greater, importance. In such dynamically changing environments, recent management success does not necessarily guarantee future sustainability.
Resumo:
The marine environment provides a number of services which contribute to human well-being including the provision of food, regulation of climate and the provision of settings for cultural gains. To ensure these services continue to be provided, effective management is required and is being strategically implemented through the development of marine spatial plans. These plans require an understanding of the costs and benefits associated with alternative marine uses and how they contribute to human well-being. One benefit which is often difficult to quantify is the health benefit of engaging with the marine environment. To address this, the research develops an approach which can estimate the contribution aquatic physical activities makes to quality adjusted life years (QALYs) in monetary and non-monetary terms. Using data from the Health Survey for England, the research estimates that physical activities undertaken in aquatic environments at a national level provides a total gain of 24,853 QALYs. A conservative estimate of the monetary value of a QALY gain of this magnitude is £176 million. This approach provides estimates of health benefits which can be used in more comprehensive impact assessments, such as cost-benefit analysis, to compare alternative marine spatial plans. The paper concludes by discussing future steps.
Resumo:
One of the most pressing challenges today is the need to manage our oceans on a sustainable basis, balancing opportunities for exploitation with the need for conservation and protection. A vital tool for informing sustainable management is access to accurate, up-to-date marine environmental data and information, which is also seen as ‘independent’ by industry, conservationists, policy-makers and other Stakeholders. The Marine Biological Association has specialised in providing independent evidence for over a century and hosts a number of programmes dedicated to independent evidence provision. For example, the Marine Life Information Network (MarLIN) is the most comprehensive information resource for the marine environment of the British Isles and also the largest review of the effects of human activities and natural events on marine species and habitats ever undertaken. MarLIN, along with the Data Archive for Seabed Species and Habitats (DASSH and other MBA information resources, is currently being used to support a wide range of UK and European legislation as well as providing vital underpinning information for industry (e.g. through informing EIAs). We provide an overview of MarLIN in particular whilst examining the importance of ‘independent’ scientific information in a multi-use environment.
Resumo:
The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2s− 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.
Resumo:
The distribution and function of many marine species is largely determined by the effect of abiotic drivers on their reproduction and early development, including those drivers associated with elevated CO2 and global climate change. A number of studies have therefore investigated the effects of elevated pCO2 on a range of reproductive parameters, including sperm motility and fertilisation success. To date, most of these studies have not examined the possible synergistic effects of other abiotic drivers, such as the increased frequency of hypoxic events that are also associated with climate change. The present study is therefore novel in assessing the impact that an hypoxic event could have on reproduction in a future high CO2 ocean. Specifically, this study assesses sperm motility and fertilisation success in the sea urchin Paracentrotus lividus exposed to elevated pCO2 for 6 months. Gametes extracted from these pre-acclimated individuals were subjected to hypoxic conditions simulating an hypoxic event in a future high CO2 ocean. Sperm swimming speed increased under elevated pCO2 and decreased under hypoxic conditions resulting in the elevated pCO2 and hypoxic treatment being approximately equivalent to the control. There was also a combined negative effect of increased pCO2 and hypoxia on the percentage of motile sperm. There was a significant negative effect of elevated pCO2 on fertilisation success, and when combined with a simulated hypoxic event there was an even greater effect. This could affect cohort recruitment and in turn reduce the density of this ecologically and economically important ecosystem engineer therefore potentially effecting biodiversity and ecosystem services.