989 resultados para cytoskeletal proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological copper homeostasis involves striking a balance between absorption and secretion. ATP7A was identified at the trans-Golgi network but relocalized to vesicles under copper exposure in the intestine. This suggests that ATP7A may be a rate limiting step in intestinal uptake of copper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new adipokine, chemerin, was identified and its expression in P. obesus and in humans suggests that it is an important contributor to the development of obesity and type 2 diabetes. Polymorphisms within the CHEMERIN gene further support its involvement in obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppressors of cytokine signalling (SOCS) proteins are negative regulators of the JAK-STAT pathway which is perturbed in certain disease states including cancers and inflammatory diseases. This thesis ascertained the suitability of zebrafish as an alternative animal model to study the SOCS proteins which established new and additional roles during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum causes the virulent form of malaria and disease manifestations are linked to growth inside infected erythrocytes. To survive and evade host responses the parasite remodels the erythrocyte by exporting several hundred effector proteins beyond the surrounding parasitophorous vacuole membrane. A feature of exported proteins is a pentameric motif (RxLxE/Q/D) that is a substrate for an unknown protease. Here we show that the protein responsible for cleavage of this motif is plasmepsin V (PMV), an aspartic acid protease located in the endoplasmic reticulum. PMV cleavage reveals the export signal (xE/Q/D) at the amino terminus of cargo proteins. Expression of an identical mature protein with xQ at the N terminus generated by signal peptidase was not exported, demonstrating that PMV activity is essential and linked with other key export events. Identification of the protease responsible for export into erythrocytes provides a novel target for therapeutic intervention against this devastating disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide emergence of Industrial biotechnology (IB) is providing opportunities to produce enzymes/proteins with variety of industrial/therapeutic applications. In transitioning the Australian economy towards a sustainable future, Federal government identified the development of IB pathway which would ensure increased productivity, enhanced sustainability, health, safety and reduced environmental footprint. The presentation will revolve around specific stories that drives Deakin University newest technology platform which applies biology and fermentation in an integrated way to play a crucial role in developing cost-effective technologies for the development of molecules that can benefit pharmaceutical and food industry in regional Victoria and Australia in general. The talk will also highlight specific examples where new products like recombinant rhamnosidase (an enzyme used for the production of flavonoids with health benefits) and ribosome inactivating proteins (detected in medicinal plants which possess RNA N- glycosidase activity that depurinates the major rRNA, thus damaging ribosome in an irreversible manner and arresting protein synthesis) would be made available through bioprocessing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome inactivating proteins (RIPs) from plants possess RNA N- glycosidase activity that depurinates the major rRNA, thus damaging ribosomes in an irreversible manner and arresting protein synthesis. RIPs are presently classified as rRNA N-glycosidase in the enzyme nomenclature (EC 3.2.2.22) and do exhibit other enzymatic activities such as ribonuclease and deoxyribonuclease activities. RIPs have been shown to manifest anti-tumor, anti-viral and anti-microbial activities. RIPs are detected in some medicinal plants but the yields are insufficient to warrant their availability to conduct clinical trials thus limiting its therapeutic potential. Here, an approach based on "bioprocess development" shall be discussed that may enhance the yield of RIPs. It is anticipated; with the involvement of “Industrial biotechnology” the eventual availability of RIPs in large quantities shall be accomplished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome inactivating proteins (RIPs) from plants possess RNA N- glycosidase activity that depurinates the major rRNA, thus damaging ribosomes in an irreversible manner and arresting protein synthesis. RIPs are presently classified as rRNA N-glycosidase in the enzyme nomenclature (EC 3.2.2.22) and do exhibit other enzymatic activities such as ribonuclease and deoxyribonuclease activities. RIPs have been shown to manifest abortifacient, anti-tumor, anti-viral and anti-microbial activities. RIPs are detected in some medicinal plants but the yields are insufficient to warrant their availability to conduct clinical trials for therapeutic application. Here, we describe an approach based on “bioprocess development” that may enhance the yield of RIPs and eventually their availability for exploiting their therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant α-L Rhamnosidase has several potential applications in citrus fruit juice processing industries. Immobilized recombinant α-L Rhamnosidase further provides an added advantage to this industrially important enzyme. Various techniques have been used to immobilize native rhamnosidase from fungal origin and applications were explored in great details by several workers. (Puri et al., 1996, 2000, 2001)

A recombinant rhamnosidase from a bacterial source was expressed in E.coli has been immobilized in calcium alginate beads (entrapment method). A batch bioreactor was created for the hydrolysis of naringin using immobilized recombinant α-L Rhamnosidase under shaking and stationary conditions and it was found to hydrolyze naringin effectively. The system was efficient to hydrolyze narigin under shaking conditions and was operationally stable up to 9 days. A high percent hydrolysis of naringin was achieved at pH 7.5 and 60˚C by immobilized rhamnosidase. Entrapped rhamnosidase was able to hydrolyze naringin content in kinnow juice repeatedly and this feature makes this technique economically suitable for debittering of fruit juices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disulfide bonds formed by the oxidation of cysteine residues in proteins are the major form of intra- and inter-molecular covalent linkages in the polypeptide chain. To better understand the conformational energetics of this linkage, we have used the MP2(full)/6-31G(d) method to generate a full potential energy surface (PES) for the torsion of the model compound diethyl disulfide (DEDS) around its three critical dihedral angles (χ2, χ3, χ2′). The use of ten degree increments for each of the parameters resulted in a continuous, fine-grained surface. This allowed us to accurately predict the relative stabilities of disulfide bonds in high resolution structures from the Protein Data Bank. The MP2(full) surface showed significant qualitative differences from the PES calculated using the Amber force field. In particular, a different ordering was seen for the relative energies of the local minima. Thus, Amber energies are not reliable for comparison of the relative stabilities of disulfide bonds. Surprisingly, the surface did not show a minimum associated with χ2 − 60°, χ390, χ2′ − 60°. This is due to steric interference between Hα atoms. Despite this, significant populations of disulfides were found to adopt this conformation. In most cases this conformation is associated with an unusual secondary structure motif, the cross-strand disulfide. The relative instability of cross-strand disulfides is of great interest, as they have the potential to act as functional switches in redox processes.