995 resultados para crystallization mechanism
Resumo:
The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.
Resumo:
Assisted by mechanical alloying and high-pressure technique, a new W3Mg intermetallic was formed. W3Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the Subsequent high pressure and high temperature treatment. W3Mg intermetallic was identified as a tetragonal structure and the lattice parameter was a = 0.7880 nm, c = 0.7070 nm. The synthesis mechanism is also discussed in this paper.
Resumo:
Assisted by a mechanical alloying and high-pressure technique, a new W4Mg intermetallic was formed. W4Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the subsequent high-pressure and high-temperature treatment. W4Mg intermetallic was identified as a cubic structure and the lattice parameter was a=0.4150 nm. The synthesis mechanism is also discussed in this paper.
Resumo:
Isothermal crystallization, subsequent melting behavior and non-isothermal crystallization of nylon 1212 samples have been investigated in the temperature range of 160-171 degreesC using a differential scanning calorimeter (DSC). Subsequent DSC scans of isothermally crystallized samples exhibited three melting endotherms. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallizations of nylon 1212. The Avrami exponent n was evaluated, and was found to be in the range of 1.56-2.03 for isothermal crystallization, and of 2.38-3.05 for non-isothermal crystallization. The activation energies (DeltaE) were determined to be 284.5 KJ/mol and 102.63 KJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius' and the Kissinger's methods.
Resumo:
The isothermal crystallization and melting behaviors of poly(propylene carbonate) end-capped with benzenesulfonyl/poly (vinyl alcohol) (PPC-BS/PVA) blends over rich PVA composition range were first investigated by differential scanning calorimetry (DSC). PPS-BS/PVA interaction parameter, chi(12), calculated from equilibrium melting temperature depression was -0.44, revealing miscibility of PPC-BS with PVA in the melt and favorable interactions. The temperature dependence of crystallization rate constant at initial crystallization stage was analyzed using the modified Lauritzen-Hoffman expression. The chain width, a(0), the thickness of a monomolecular layer, b(0), the fold and lateral surface-free energies, sigma(e) and sigma, and the work of chain folding, q, for neat PVA were first reckoned to be 4.50 Angstrom, 4.78 Angstrom, 76.0 erg.cm(-2), and 4.70 kcal.mol(-1), respectively. The values of sigma(e) and q for PVA in PPC-BS/PVA blends exhibited a maximum in the neighborhood of 10/90 PPC-BS/PV, respectively.
Resumo:
Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n = 3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U-* = 1500 cal mol(-1), T-infinity = 30 K and T-g = 278 K, the nucleation parameter K-g was determined, which was found to be 3.14+/-0.07 x 10(5) (K-2), lower than that for pure PHB. The surface-free energy sigma = 2.55 x 10(-2) J m(-2) and sigma(e) = 2.70+/-0.06 x 10-2 J m(-2) were estimated and the work of chain-folding (q = 12.5+/-0.2 kJ mol(-1)) was derived from sigma(e), and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.
Resumo:
Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.
Resumo:
The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La3+ Were studied by chemical phase analysis, X-ray diffraction and infrared spectrometry analysis. The experimental results show that phase transformation reactions of FeCO3, Fe2O3 and BaFe2O4, barium hexaferrite and gamma-Fe2O3 take place in the heat treatment of gel. While the doping lanthanide ion replace barium ion, an equivalent quantity of Fe3+ are reduced to Fe2+ to maintain the charge equilibrium.
Resumo:
In this work. we report the fabrication of high-quality (101)-oriented orthorhombic NaMnF3 and (100)-oriented cubic KMnF3 perovskites via an organic monolayer template at room temperature. The controlled crystallization under the organic monolayer template is explained in terms of the electrostatic interactions and beneficial lattice matching between the organic template and the ions undergoing nucleation. The present study is of great importance in the preparation of oriented perovskite materials as well as in the understanding of the mechanism for organic-template-directed crystallization.
Resumo:
Solvent free polyaniline emeraldine base(EB) corrosion protection coating was prepared, employing aliphatic polyamine as solvent of EB as well as hardener of epoxy resin. This coating passed 2000h of salt fog test when the EB loading was about 1 wt%. The interaction between EB and iron indicated that EB acted as a "quasi-catalyst" to cause the formation of densed iron oxide film in the interface.
Resumo:
The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.
Resumo:
The compositions of the extracted complexes of La, Gd, Er and Y with sec-octyl-phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K-M were determined using two-phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA(3) . 2.5HA, GdA(3) . 3HA, ErA(3) . 3.1HA and YA(3) . 4.3HA respectively. And their pK(M) are 3.43, 3.46, 3.08 and 2.58 respectively.
Resumo:
The morphologies and crystalline structures of melt-crystallized ultrathin isotactic poly(1-butene) films have been studied with transmission electron microscopy and electron diffraction. It is demonstrated that a bypass of form II crystallization can be achieved with an increase in its crystallization temperature. Electron microscopy observations show that melt-grown isotactic poly(1-butene) single crystals have a well-shaped hexagonal form, whereas form I crystals converted from form II display the morphologies of their tetragonal precursors. Electron diffraction results indicate that, instead of the twinned hexagonal pattern of the converted form I crystal, the directly formed form I single crystals exhibit an untwinned hexagonal pattern.
Resumo:
The influences of nucleating agent EDBS on crystallization behavior and properties of polypropylene UP) and its copolymer with a small amount (4. 48 %, molar fraction) of ethylene (CPP) were studied. DSC results indicated that the crystallization temperature of iPP and CPP samples with 0.5 % (mass fraction) EDBS obviously increased and the degree of crystallinity of these samples became higher. In addition, adding small amount of EDBS enhanced the crystallization of the low isotacticity and low molecular weight segments of the CPP. PLM results showed that their spherulite size decreased markedly, and as a result, the transmittance and haze of the films were all improved.