1000 resultados para confusion layer
Resumo:
The growth rate of GaN buffer layers on sapphire grown by metalorganic vapor-phase epitaxy (MOVPE) in an atmospheric pressure, two-channel reactor was studied. The growth rate, as measured using laser reflectance, was found to be dependent on growth temperature, molar flow rate of the sources tin this case, trimethylgallium and ammonia) and the input configuration of sources into the reactor. A model of the GaN buffer layer growth process by MOVPE is proposed to interpret the experimental evidence. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A transmission electron microscopy study of triple-ribbon contrast features in a ZnTe layer grown epitaxially on a vicinal GaAs (001) substrate is reported. The ribbons go through the layer as threading dislocations near the [<(11)over bar 2>](111) or [112](<(11)over bar 1>) directions. Each of these (with a 40 nm width) has two narrow parts enclosed by three partial dislocations (with a 20 nm spacing). By contrast analysis and contrast simulation, the ribbons have been shown to be composed of two partially overlapping stacking faults. Their origin is attributed to a forced reaction between two crossing perfect misfit dislocations.
Resumo:
InAs quantum dots inserted at the middle of a GaAs quantum well structure have been investigated by transmission electron microscopy and scanning transmission electron microscopy. We find that the growth condition of the overlayer on the InAs dots can lead to drastic changes in the structure of the dots. We attribute the changes to a combination of factors such as preferential growth of the overlayer above the wetting layers because of the strained surfaces and to the thermal instability of the InAs dots at elevated temperature. The result suggests that controlled sublimation, through suitable manipulation of the overlayer growth conditions, can be an effective tool to improve the structure of the self-organized quantum dots and can help tailor their physical properties to any specific requirements of the device applications. (C) 1998 American Institute of Physics.
Resumo:
The physical properties of low-temperature-deposited GaN buffer layers with different thicknesses grown by metal-organic vapor-phase epitaxy have been studied. A tentative model for the optimum thickness of buffer layer has been proposed. Heavily Si-doped GaN layers have been grown using silane as the dopant. The electron concentration of Si-doped GaN reached 1.7 x 10(20) cm(-3) with mobility 30 cm(2)/V s at room temperature. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The transverse mode control in oxide confined vertical-cavity surface-emitting lasers is discussed by modeling the dielectric aperture as a uniform waveguide and an extra reflectivity at the oxide layer. The phase of the extra reflectivity and the refractive index step can be adjusted to change the mode threshold gain. We calculate the lateral refractive index step from the mode wavelength difference between aperture and perimeter modes, and compare it with that obtained from the weighted average index. The mode reflectivity in terms of the lateral optical confinement factor at the oxide layer is considered in calculating the threshold gain for transverse modes. The numerical results show that higher transverse modes can be suppressed by adjusting the position of a thin AlAs-oxide layer inside a three-quarter-wave layer in the distributed Bragg reflector. (C) 1998 American Institute of Physics. [S0021-8979(98)04007-9].
Resumo:
Wurtzite GaN films have been grown on (001) Si substrates using gamma-Al2O3 as an intermediate layer by low pressure (similar to 76 Torr) metalorganic chemical vapor deposition. Reflection high energy electron diffraction and double crystal x-ray diffraction measurements revealed that the thin gamma-Al2O3 layer of "compliant" character was an effective intermediate layer for the GaN film grown epitaxially on Si. The narrowest linewidth of the x-ray rocking curve for (0002) diffraction of the 1.3 mu m GaN sample was 54 arcmin. The orientation relationship of GaN/gamma-Al2O3/Si was (0001) GaN parallel to(001) gamma-Al2O3 parallel to(001) Si, [11-20] GaN parallel to[110] gamma-Al2O3 parallel to[110] Si. The photoluminescence measurement for GaN at room temperature exhibited a near band-edge peak of 365 nm (3.4 eV). (C) 1998 American Institute of Physics.
Resumo:
Pseudomorphic Iny2Al1-y2As/In0.73Ga0.27As/Iny1Al1-y1As (y1 greater than or equal to 0.52) modulation-doped heterostructures with an intentional nonlattice-matched buffer layer were successfully grown by molecular beam epitaxy on (100)InP substrates. Fourier transform photoluminescence and double crystal x-ray diffraction measurements show a superior crystalline quality in the high In content channel, when In mole fraction increases from y1=0.52 to 0.55 in the Iny1Al1-y1As buffer layer. In this case, an increasing of 16.3% and 23.5% for conductivity (mu xn(s)) and mobility, related to the strain compensation in the In0.73Ga0.27As channel, was achieved, respectively, comparing to the structure containing a well-lattice matched buffer layer. With increasing the mismatch further (y1=0.58), a morphology with cross-hatched pattern was observed due to the onset of a large amount of misfit dislocations, and the electronic characterization is not able to be improved continuously. Because we can realize high quality strained P-HEMTs in a relative wide range of equivalent beam flux (EBF) ratios, the stringent control over the constant EBF is not indispensable on this In-based material system. (C) 1997 American Vacuum Society.
Resumo:
We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.
Resumo:
We have explored the shared-layer integration fabrication of an resonant-cavity-enhanced p-i-n photodector (RCE- p-i-n-PD) and a single heterojunction bipolar transistor (SHBT) with the same epitaxy grown layer structure. MOCVD growth of the different layer structure for the GaAs based RCE- p-i-n-PD/SHBT require compromises to obtain the best performance of the integrated devices. The SHBT is proposed with super-lattice in the collector, and the structure of the base and the collector of the SHBT is used for the RCE. Up to now, the DC characteristics of the integrated device have been obtained.
Resumo:
Tandem amorphous silicon solar cells have attracted extensive interest because of better performance than single junction counterpart. As n/p junctions play an important role in the current transportation of tandem solar cells, it is important to design and fabricate good n/p junctions.The properties of the n/p junction of amorphous silicon (a-Si) were studied. We investigate the effect of interposing a nanocrystalline p(+) layer between n (top cell) and p (bottom cell) layers of a tandem solar cell. The crystalline volume fraction, the band gap, the conductivity and the grain size of the nanocrystalline silicon (nc-Si) p(+) layer could be modulated by changing the deposition parameters.Current transport in a-Si based n/p ("tunnel") junctions was investigated by current-voltage measurements. The voltage dependence on the resistance (V/J) of the tandem cells was examined to see if n/p junction was ohmic contact. To study the affection of different doping concentration to the properties of the nc-Si p(+) layers which varied the properties of the tunnel junctions, three nc-Si p(+) film samples were grown, measured and analyzed.
Resumo:
In this work, we present the growth of InAs rings by droplet epitaxy. A complete process from the rings formation to their density saturation has been demonstrated: A morphological evolution with the varying of the indium deposition amount has been, clearly observed. Our results indicate that there, is a critical deposition amount (similar to 1.1 ML) for the indium to form InAs dots before droplets form; there is also a critical deposition amount (similar to 1.4 ML) to form InAs ring, but it is caused by the formation of droplets as the deposition amount increases. The density of the rings saturates when the deposition amount exceeds similar to 3.3 ML; because the adsorbed indium atoms block sites for further adsorption and the following supplied In only contributes to the size increase of In droplets. Still, as the In deposition amount increases, we can find coupled quantum rings. Moreover, the wetting layer properties of these structures are studied by reflectance difference spectroscopy, which shows a complicated evolution with the In amount. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100 degrees was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300 degrees C indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.
Resumo:
A Ge layer with a pitting surface can be obtained when the growth temperature is lowered to 290 degrees C. On the low temperature Ge buffer layer with pits, high quality Ge layer was grown at 600 degrees C with a threading dislocation density of similar to 1x10(5)cm(-2). According to channeling and random Rutherford backscattering spectrometry spectra, a chi(min) value of 10% and 3.9% was found, respectively, at the Ge/Si interface and immediately under the surface peak. The root-mean-square surface roughness of Ge film was 0.33nm.
Resumo:
Oxidizing thick porous silicon layer into silicon dioxide is a timesaving and low-cost process for producing thick silicon dioxide layer used in silicon-based optical waveguide devices. The solution of H2O2 is proposed to post-treat thick porous silicon (PS) films. The prepared PS layer as the cathode is applied about 10 mA/cm(2) current in mixture of ethanol, HF, and H2O2 solutions, in order to improve the stability and the smoothness of the surface. With the low-temperature dry-O-2 pre-oxidizations and high-temperature wet O-2 oxidizations process, a high-quality SiO2 30 mu m thickness layer that fit for the optical waveguide device was prepared. The SEM images show significant improved smoothness on the surface of oxidized PS thick films, the SiO2 film has a stable and uniformity reflex index that measured by the prism coupler, the uniformity of the reflex index in different place of the wafer is about 0.0003.
Resumo:
Hexagonal GaN films (similar to 3 mu m) were grown on 3c-SiC/Si(111) and carbonized Si(111) substrates using a thick AlN buffer Cracks are observed on the surface of the GaN film grown on the carbonized Si(111), while no cracks are visible on the 3c-SiC/Si(111). XRD exhibits polycrystalline nature of the GaN film grown on the carbonized Si(111) due to poorer crystalline quality of this substrate. Raman spectra reveal that all GaN layers are under tensile stress, and the GaN layer grown on 3c-SiC/Si(111) shows a very low stress value of sigma(xx) = 0.65 Gpa. In low-temperature Photoluminescence spectra the remarkable donor-acceptor-pair recombination and yellow band can be attributed to the incorporation of Si impurities from the decomposition of SiC.