993 resultados para concrete buildings


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With greater emphasis now being placed on the durability of concrete and the need for on-site characterization of concrete for durability, there is an increasing dependence on the measurement of the permeation properties of concrete. Such properties can be measured in the laboratory under controlled ambient conditions, namely, temperature and relative humidity, and comparisons made between samples not affected by testing conditions. An important factor that influences permeation measurements is the moisture state of the concrete prior to testing. Moisture gradients are known to exist in exposed concretes; therefore, all laboratory tests are generally carried out after preconditioning to a reference moisture state. This is reasonably easy to achieve in the laboratory, but more difficult to carry out on-site. Different methods of surface preconditioning in situ concrete are available; however, there is no general agreement on the suitability of any one method. Therefore, a comprehensive set of experiments was carried out with four different preconditioning methods. Results from these investigations indicated that only superficial drying could be achieved by using any of the preconditioning methods investigated and that significant moisture movement below a depth of 15 mm was not evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several products for surface treatment are available on the market to enhance durability characteristics of concrete. For each of these materials a certain level of protection is claimed. However, there is no commonly accepted procedure to assess the effectiveness of these treatments. The inherent generic properties may be of use to the manufacturers and those responsible for specifications, however, practising engineers are interested in knowing how they improve the performance of their structures. Thus in this review an attempt is made to assess the engineering aspects of the various surface treatments so that a procedure for their selection can be proposed. (C) 1997 Elsevier Science Lid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permeation characteristics and fracture strength are the fundamental properties of concrete that influence the initiation and extent of damage and can form the basis by which deterioration can be predicted. The relationship between these properties and deterioration mechanisms is discussed along with the different models representing their interaction with the environment. Mehta presented a holistic model of the deterioration of concrete based on the environmental action on the microstructure of concrete. Using a similar approach, a detailed investigation on the causes of concrete deterioration is used to develop a macro-model for each mechanism relating to the physical properties of concrete. A single interaction model is then presented for all types of deterioration, emphasizing the permeation properties of concrete. Data from an in situ investigation of concrete bridges in Northern Ireland is used to validate this model. This is followed by a micro-predictive model which includes an ionic transport sub-model, a deterioration sub-model and a structural sub-model and affords quantitative prediction of the deterioration of concrete structures. The quantitative predictive capabilities of the micro-model are demonstrated with the use of reported experimental data.