967 resultados para cloud learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical requirement for safe autonomous navigation of a planetary rover is the ability to accurately estimate the traversability of the terrain. This work considers the problem of predicting the attitude and configuration angles of the platform from terrain representations that are often incomplete due to occlusions and sensor limitations. Using Gaussian Processes (GP) and exteroceptive data as training input, we can provide a continuous and complete representation of terrain traversability, with uncertainty in the output estimates. In this paper, we propose a novel method that focuses on exploiting the explicit correlation in vehicle attitude and configuration during operation by learning a kernel function from vehicle experience to perform GP regression. We provide an extensive experimental validation of the proposed method on a planetary rover. We show significant improvement in the accuracy of our estimation compared with results obtained using standard kernels (Squared Exponential and Neural Network), and compared to traversability estimation made over terrain models built using state-of-the-art GP techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to empirically examine the state of cloud computing adoption in Australia. I specifically focus on the drivers, risks, and benefits of cloud computing from the perspective of IT experts and forensic accountants. I use thematic analysis of interview data to answer the research questions of the study. The findings suggest that cloud computing is increasingly gaining foothold in many sectors due to its advantages such as flexibility and the speed of deployment. However, security remains an issue and therefore its adoption is likely to be selective and phased. Of particular concern are the involvement of third parties and foreign jurisdictions, which in the event of damage may complicate litigation and forensic investigations. This is one of the first empirical studies that reports on cloud computing adoption and experiences in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2012, Australia introduced a new National Quality Framework, comprising enhanced quality expectations for early childhood education and care services, two national learning frameworks and a new Assessment and Rating System spanning child care centres, kindergartens and preschools, family day care and outside school hours care. This is the linchpin in a series of education reforms designed to support increased access to higher quality early childhood education and care (ECEC) and successful transition to school. As with any policy change, success in real terms relies upon building shared understanding and the capacity of educators to apply new knowledge and to support change and improved practice within their service. With this in mind, a collaborative research project investigated the efficacy of a new approach to professional learning in ECEC: the professional conversation. This paper reports on the trial and evaluation of a series of professional conversations to support implementation of one element of the NQF, the Early Years Learning Framework (DEEWR,2009), and their capacity to promote collaborative reflective practice, shared understanding, and improved practice in ECEC. Set against the backdrop of the NQF, this paper details the professional conversation approach, key challenges and critical success factors, and the learning outcomes for conversation participants. Findings support the efficacy of this approach to professional learning in ECEC, and its capacity to support policy reform and practice change in ECEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer vision is increasingly becoming interested in the rapid estimation of object detectors. The canonical strategy of using Hard Negative Mining to train a Support Vector Machine is slow, since the large negative set must be traversed at least once per detector. Recent work has demonstrated that, with an assumption of signal stationarity, Linear Discriminant Analysis is able to learn comparable detectors without ever revisiting the negative set. Even with this insight, the time to learn a detector can still be on the order of minutes. Correlation filters, on the other hand, can produce a detector in under a second. However, this involves the unnatural assumption that the statistics are periodic, and requires the negative set to be re-sampled per detector size. These two methods differ chie y in the structure which they impose on the co- variance matrix of all examples. This paper is a comparative study which develops techniques (i) to assume periodic statistics without needing to revisit the negative set and (ii) to accelerate the estimation of detectors with aperiodic statistics. It is experimentally verified that periodicity is detrimental.