996 resultados para chromosome mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas). We established a structured diversity foundation set of 376 accessions to capture a high proportion of species-wide allelic diversity within domesticated Brassica oleracea, including representation of wild relatives (C genome, 1n = 9) from natural populations. These accessions and 74 modern F-1 hybrid cultivars were grown in glasshouse and field environments. Shoot Ca and Mg varied 2- and 2.3-fold, respectively, and was typically not inversely correlated with shoot biomass, within most subtaxa. The closely related capitata (cabbage) and sabauda (Savoy cabbage) subtaxa consistently had the highest mean shoot Ca and Mg. Shoot Ca and Mg in glasshouse-grown plants was highly correlated with data from the field. To understand and dissect the genetic basis of variation in shoot Ca and Mg, we studied homozygous lines from a segregating B. oleracea mapping population. Shoot Ca and Mg was highly heritable (up to 40). Quantitative trait loci (QTL) for shoot Ca and Mg were detected on chromosomes C2, C6, C7, C8, and, in particular, C9, where QTL accounted for 14 to 55 of the total genetic variance. The presence of QTL on C9 was substantiated by scoring recurrent backcross substitution lines, derived from the same parents. This also greatly increased the map resolution, with strong evidence that a 4-cM region on C9 influences shoot Ca. This region corresponds to a 0.41-Mb region on Arabidopsis (Arabidopsis thaliana) chromosome 5 that includes 106 genes. There is also evidence that pleiotropic loci on C8 and C9 affect shoot Ca and Mg. Map-based cloning of these loci will reveal how shoot-level phenotypes relate to Ca 21 and Mg 21 uptake and homeostasis at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. Methods: Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus 'Tapidor' x 'Ningyou 7' (TNDH) using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. Key Results: In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. Conclusions: High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium (K) fertilizers are used in intensive and extensive agricultural systems to maximize production. However, there are both financial and environmental costs to K-fertilization. It is therefore important to optimize the efficiency with which K-fertilizers are used. Cultivating crops that acquire and/or utilize K more effectively can reduce the use of K-fertilizers. The aim of the present study was to determine the genetic factors affecting K utilization efficiency (KUtE), defined as the reciprocal of shoot K concentration (1/K(shoot)), and K acquisition efficiency (KUpE), defined as shoot K content, in Brassica oleracea. Genetic variation in K(shoot) was estimated using a structured diversity foundation set (DFS) of 376 accessions and in 74 commercial genotypes grown in glasshouse and field experiments that included phosphorus (P) supply as a treatment factor. Chromosomal quantitative trait loci (QTL) associated with K(shoot) and KUpE were identified using a genetic mapping population grown in the glasshouse and field. Putative QTL were tested using recurrent backcross substitution lines in the glasshouse. More than two-fold variation in K(shoot) was observed among DFS accessions grown in the glasshouse, a significant proportion of which could be attributed to genetic factors. Several QTL associated with K(shoot) were identified, which, despite a significant correlation in K(shoot) among genotypes grown in the glasshouse and field, differed between these two environments. A QTL associated with K(shoot) in glasshouse-grown plants (chromosome C7 at 62 center dot 2 cM) was confirmed using substitution lines. This QTL corresponds to a segment of arabidopsis chromosome 4 containing genes encoding the K(+) transporters AtKUP9, AtAKT2, AtKAT2 and AtTPK3. There is sufficient genetic variation in B. oleracea to breed for both KUtE and KUpE. However, as QTL associated with these traits differ between glasshouse and field environments, marker-assisted breeding programmes must consider carefully the conditions under which the crop will be grown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taxonomic free sorting (TFS) is a fast, reliable and new technique in sensory science. The method extends the typical free sorting task where stimuli are grouped according to similarities, by asking respondents to combine their groups two at a time to produce a hierarchy. Previously, TFS has been used for the visual assessment of packaging whereas this study extends the range of potential uses of the technique to incorporate full sensory analysis by the target consumer, which, when combined with hedonic liking scores, was used to generate a novel preference map. Furthermore, to fully evaluate the efficacy of using the sorting method, the technique was evaluated with a healthy older adult consumer group. Participants sorted eight products into groups and described their reason at each stage as they combined those groups, producing a consumer-specific vocabulary. This vocabulary was combined with hedonic data from a separate group of older adults, to give the external preference map. Taxonomic sorting is a simple, fast and effective method for use with older adults, and its combination with liking data can yield a preference map constructed entirely from target consumer data.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype–phenotype mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key message We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species. Abstract Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely-related crop species, lentil, and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2 cM interval of Vf chromosome 2 which was highly collinear with Mt3. The obvious candidate gene from 77 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene (Mt3g092830, Mt3g092840) controlling anthocyanin production in Medicago and re-sequencing of the Vf orthologue showed a putative causative deletion of the entire 5’ end of the gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pyrimidine glycosides, vicine and convicine, limit the use of faba bean (Vicia faba L.) as food and feed. A single recessive gene, vc-, is responsible for a lowered vicine–convicine concentration. The biosynthetic pathway of these closely related compounds is not known, and the nearest available markers are several cM away from vc-. Improved markers would assist breeding and help to identify candidate genes. A segregating population of 210 F5 recombinant inbred lines was developed from the cross of Mélodie/2 (low vicine–convicine) × ILB 938/2 (normal vicine–convicine), and vicine–convicine concentrations were determined twice on each line. The population was genotyped with a set of 188 SNPs. A strong, single QTL for vicine–convicine concentration was identified on chromosome I, flanked by markers 1.0 cM away on one side and 2.6 cM on the other. The interval defined by these markers in the model species Medicago truncatula includes about 340 genes, but no candidate genes were identified. Further fine mapping should lead to the identification of tightly linked markers as well as narrowing down the search for candidate regulatory or biosynthetic genes which could underlie the vc- locus.