992 resultados para chlorophyll fluorescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence of Tm3+/Er3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce3+ are investigated. It shows that Ce3+ codoping with Tm3+/Er3+ in BS glasses results in a quenching of Tm3+ ion emission from F-3(4) to the H-3(6) level. Consequently, the 1.47 mu m emission occurs after the population inversion between the H-3(4) and F-3(4) levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55 mu m emission band of Er3+ with 1.47 mu m emission band of Tm3+ under 800nm excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<p>Strong quenching of the fluorescence of aromatic hydrocarbons by tertiary aliphatic amines has been observed in solution at room temperature. Accompanying the fluorescence quenching of aromatic hydrocarbons, an anomalous emission is observed. This new emission is very broad, structureless and red-shifted from the original hydrocarbon fluorescence.</p> <p>Kinetic studies indicate that this anomalous emission is due to an <u>exciplex</u> formed by an aromatic hydrocarbon molecule in its lowest excited singlet state with an amine molecule. The fluorescence quenching of the aromatic hydrocarbons is due to the depopulation of excited hydrocarbon molecules by the formation of exciplexes, with subsequent de-excitation of exciplexes by either radiative or non-radiative processes. </p> <p>Analysis of rate constants shows the electron-transfer nature of the exciplex. Through the study of the effects on the frequencies of exciplex emissions of substituents on the hydrocarbons, it is concluded that partial electron transfer from the amine molecule to the aromatic hydrocarbon molecule in its lowest excited singlet state occurs in the formation of exciplex. Solvent effects on the exciplex emission frequencies further demonstrate the polar nature of the exciplex.</p> <p>A model based on this electron-transfer nature of exciplex is proposed and proves satisfactory in interpreting the exciplex emission phenomenon in the fluorescence quenching of aromatic hydrocarbons by tertiary aliphatic amines. </p>

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption spectra and upconversion fluorescence spectra of Er3+/-Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm(-1). The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial hypercholesterolemia (FH) is a common autosomal codominant disease with a frequency of 1:500 individuals in its heterozygous form. The genetic basis of FH is most commonly mutations within the LDLR gene. Assessing the pathogenicity of LDLR variants is particularly important to give a patient a definitive diagnosis of FH. Current studies of LDLR activity ex vivo are based on the analysis of I-125-labeled lipoproteins (reference method) or fluorescent-labelled LDL. The main purpose of this study was to compare the effectiveness of these two methods to assess LDLR functionality in order to validate a functional assay to analyse LDLR mutations. LDLR activity of different variants has been studied by flow cytometry using FITC-labelled LDL and compared with studies performed previously with I-125-labeled lipoproteins. Flow cytometry results are in full agreement with the data obtained by the I-125 methodology. Additionally confocal microscopy allowed the assignment of different class mutation to the variants assayed. Use of fluorescence yielded similar results than I-125-labeled lipoproteins concerning LDLR activity determination, and also allows class mutation classification. The use of FITC-labelled LDL is easier in handling and disposal, cheaper than radioactivity and can be routinely performed by any group doing LDLR functional validations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the steady-state fluorescence, three- photon absorption-induced fluorescence emission and subsequently induced optical limiting behaviour of a fluorene derivative with D-pi-D structural motifs. The lifetime of the steady-state fluorescence is 0.903 ns. Large optical limiting behaviour induced by 3PA has also been demonstrated, and the nonlinear absorption coefficient gamma derived from 3PA fitting curves is 5.92 x 10(-20) cm(3)/W-2 and the corresponding molecular 3PA cross-section sigma(3)' is 1.14 x 10(-76) cm(6) s(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nd3+ -codoped and Al3+-Nd3+-codoped high silica glasses have been prepared by sintering nanoporous glasses impregnated with Nd3+ stop and Al3+ ions. The Judd-Ofelt intensity parameters Omega(2,4,6) of Nd3+-doped high silica glasses were obtained and used to analyze aluminum codoping effects. Fluorescence properties of Nd3+-doped high silica glasses strongly depend on the Al3+ concentration. While Nd3+ ion absorption and emission intensities of obviously increase when aluminum is added to Nd3+-doped high silica glasses, fluorescence lifetimes decrease and aluminum codoping has almost no influence on the radiative quantum efficiencies. This indicates that aluminum codoping is responsible for an anti-quenching effect through a local modification of rare-earth environments rather than through physical cluster dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range. of intensity reverse between red and green fluorescence of Er( 0.5) Yb( 3): FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32 x 10(2). It is calculated that the phonon- assistant energy transfer rate of the electric multi- dipole interaction of {(4)G(11/2)( Er3+) -> F-4(9/2)( Er3+), F-2(7/2)( Yb3+). F-2(5/2)( Yb3+)} energy transfer of Er( 0.5) Yb( 3): FOV is around 1.380 x 10(8) s(-1), which is much larger than the relative multiphonon nonradiative relaxation rates 3.20 x 10(5) s(-1). That energy transfer rate for general material with same rare earth ion's concentration is about 1.194 x 10(5) s(-1). These are the reason to emerge the unusual intensity reverse phenomenon in Er( 0.5) Yb( 3): FOV. (C) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)--&gt4I_(15/2), 4S_(3/2)--&gt4I_(15/2), and 4F_(9/2)--&gt4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time. effect of halide ions (F-, Cl-, Br-, and I-) introduction on structure, thermal stability, and upconversion fluorescence in Er3+/Yb3+-codoped oxide-halide germanium-bismuth glasses has been systematically investigated. The results show that halide ions modified germanium-bismuth glasses have lower maximum phonon energy and phonon density, worse thermal stability. longer measured lifetimes of I-4(l1/2) level, and stronger upconversion emission than germanium-bismuth glass. All these results indicate that halide ions play an important role in the formation of glass network, and have an important influence on the upconversion luminescence. The possible upconversion mechanisms of Er3+ ion are also evaluated. &COPY; 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of F- ions in Yb3+-doped tellurite glass systems on the emission cross-section and measured fluorescence lifetime are investigated. The results show that both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase from 1.32 to 1.39 pm(2) and from 0.93 to 1.12 ms respectively with the increase of F- ions from 0 to 10 mol% and that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and the change of OH- groups in this glass system. Analysis demonstrates that the addition of fluoride decreases the symmetry of the structure of tellurite glasses resulting in increasing of the emission cross-section and removes the OH- groups resulting in increasing of the measured fluorescence lifetime of Yb3+ ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of F- ions in a germanium-lead-tellurite glass system oil the spectral and potential laser properties of the Yb3+ are investigated. The absorption spectra, lifetimes, the emission cross-sections and the minimum pump intensities of the glass system with and without F- ions have been measured and calculated. The results show that the fluorescence lifetime and the minimum pump intensity of Yb3+ ions increase evidently, which indicates that germanium lead-oxyfluoride tellurite glass is a promising laser host matrix for high power generation. FT-IR spectra were used to analyse the effect of F- ions on OH- groups in this glass system. Analysis demonstrates that addition of fluoride removes the OH- groups and results in improvement of fluorescence lifetime of Yb3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and frequency upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride germanate glasses have been investigated. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network and has an important influence on the upconversion luminescence. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible upconversion mechanism was also estimated and evaluated. Intense upconversion luminescence indicates that Er3+/Yb3+-codoped oxychloride germanate glass is a promising laser material. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.