962 resultados para cash flow generating units
Resumo:
BACKGROUND: The strength of the association between intensive care unit (ICU)-acquired nosocomial infections (NIs) and mortality might differ according to the methodological approach taken. OBJECTIVE: To assess the association between ICU-acquired NIs and mortality using the concept of population-attributable fraction (PAF) for patient deaths caused by ICU-acquired NIs in a large cohort of critically ill patients. SETTING: Eleven ICUs of a French university hospital. DESIGN: We analyzed surveillance data on ICU-acquired NIs collected prospectively during the period from 1995 through 2003. The primary outcome was mortality from ICU-acquired NI stratified by site of infection. A matched-pair, case-control study was performed. Each patient who died before ICU discharge was defined as a case patient, and each patient who survived to ICU discharge was defined as a control patient. The PAF was calculated after adjustment for confounders by use of conditional logistic regression analysis. RESULTS: Among 8,068 ICU patients, a total of 1,725 deceased patients were successfully matched with 1,725 control patients. The adjusted PAF due to ICU-acquired NI for patients who died before ICU discharge was 14.6% (95% confidence interval [CI], 14.4%-14.8%). Stratified by the type of infection, the PAF was 6.1% (95% CI, 5.7%-6.5%) for pulmonary infection, 3.2% (95% CI, 2.8%-3.5%) for central venous catheter infection, 1.7% (95% CI, 0.9%-2.5%) for bloodstream infection, and 0.0% (95% CI, -0.4% to 0.4%) for urinary tract infection. CONCLUSIONS: ICU-acquired NI had an important effect on mortality. However, the statistical association between ICU-acquired NI and mortality tended to be less pronounced in findings based on the PAF than in study findings based on estimates of relative risk. Therefore, the choice of methods does matter when the burden of NI needs to be assessed.
Resumo:
The aim of this work is to describe the techniques that have been used for preparation and analysis of whole fetal liver extracts destined for in utero transplantation. Nine fetal livers between 12 and 17 weeks of gestation were prepared: cell counts and assessment of the hematopoietic cell viability were performed on cell suspensions. Hepatocytes represented 40 to 80% of the whole cell population. The remaining cells were constituted by hematopoietic cells (mainly erythroblasts), as well as by endothelial cells. The latter expressed CD34 on their surface, interfering with the assessment of CD34+ hematopoietic cells by flow cytometry. Direct visual morphologic control using alkaline phosphatase anti-alkaline phosphatase techniques was needed to differentiate hematopoietic from extra-hematopoietic CD34+ cells. Between 3.0 and 34.6 x 10(6) CD34+ viable hematopoietic cells were collected per fetal liver. Adequate differentiation of these cells into burst-forming units erythroid (BFU-E), colony-forming units granulocyte-macrophage (CFU-GM), and colony-forming units granulocyte erythroid macrophage megakaryocyte (CFU-GEMM) has been shown for each sample in clonogeneic cultures. In conclusion, fetal liver is a potential source of hematopoietic stem cells. Their numeration, based on the presence of CD34, is hampered by the expression of this antigen on other cells contained in the liver cell extract, in particular endothelial cells.