995 resultados para budget estimate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of the direct, glaciological determination of the mass budget of Hintereisferner and Kesselwandferner in the Ötztal Alps are summarized for the years 1075/76-1977/78. Tabulations of budget quantities, accumulation and ablation areas are supplemented by graphs of altitudinal, and areal distribution of mass balance and by examples of the seasonal course of ablation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dataset contains the result of a joint least squares inversion of GRACE and altimetry data. The results are evaluated in terms of sea level change for the global ocean as well as dedicated areas. In addition, some auxiliary data is provided to enable reproducibility of the results in Rietbroek et al. 2016, and a google Earth kmz file is provided which visualizes the trends derived from the inversion results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated gas bubble emissions at the Don-Kuban paleo-fan in the northeastern Black Sea regarding their geological setting, quantities as well as spatial and temporal variabilities during three ship expeditions between 2007 and 2011. About 600 bubble-induced hydroacoustic anomalies in the water column (flares) originating from the seafloor above the gas hydrate stability zone (GHSZ) at ~700 m water depth were found. At about 890 m water depth a hydrocarbon seep area named "Kerch seep area" was newly discovered within the GHSZ. We propose locally domed sediments ('mounds') discovered during ultra-high resolution bathymetric mapping with an autonomous underwater vehicle (AUV) to result from gas hydrate accumulation at shallow depths. In situ measurements indicated spatially limited temperature elevations in the shallow sediment likely induced by upward fluid flow which may confine the local GHSZ to a few meters below the seafloor. As a result, gas bubbles are suspected to migrate into near-surface sediments and to escape the seafloor through small-scale faults. Hydroacoustic surveys revealed that several flares originated from a seafloor area of about 1 km**2 in size. The highest flare disappeared in about 350 m water depth, suggesting that the released methane remains in the water column. A methane flux estimate, combining data from visual quantifications during dives with a remotely operated vehicle (ROV) with results from ship-based hydroacoustic surveys and gas analysis revealed that between 2 and 87 x 10**6 mol CH4 yr-1 escaped into the water column above the Kerch seep area. Our results show that the finding of the Kerch seep area represents a so far underestimated type of hydrocarbon seep, which has to be considered in methane budget calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic CO2 emission will lead to an increase in seawater pCO2 of up to 80-100 Pa (800-1000 µatm) within this century and to an acidification of the oceans. Green sea urchins (Strongylocentrotus droebachiensis) occurring in Kattegat experience seasonal hypercapnic and hypoxic conditions already today. Thus, anthropogenic CO2 emissions will add up to existing values and will lead to even higher pCO2 values >200 Pa (>2000 µatm). To estimate the green sea urchins' potential to acclimate to acidified seawater, we calculated an energy budget and determined the extracellular acid base status of adult S. droebachiensis exposed to moderately (102 to 145 Pa, 1007 to 1431 µatm) and highly (284 to 385 Pa, 2800 to 3800 µatm) elevated seawater pCO2 for 10 and 45 days. A 45 - day exposure to elevated pCO2 resulted in a shift in energy budgets, leading to reduced somatic and reproductive growth. Metabolic rates were not significantly affected, but ammonium excretion increased in response to elevated pCO2. This led to decreased O:N ratios. These findings suggest that protein metabolism is possibly enhanced under elevated pCO2 in order to support ion homeostasis by increasing net acid extrusion. The perivisceral coelomic fluid acid-base status revealed that S. droebachiensis is able to fully (intermediate pCO2) or partially (high pCO2) compensate extracellular pH (pHe) changes by accumulation of bicarbonate (maximum increases 2.5 mM), albeit at a slower rate than typically observed in other taxa (10 day duration for full pHe compensation). At intermediate pCO2, sea urchins were able to maintain fully compensated pHe for 45 days. Sea urchins from the higher pCO2 treatment could be divided into two groups following medium-term acclimation: one group of experimental animals (29%) contained remnants of food in their digestive system and maintained partially compensated pHe (+2.3 mM HCO3), while the other group (71%) exhibited an empty digestive system and a severe metabolic acidosis (-0.5 pH units, -2.4 mM HCO3). There was no difference in mortality between the three pCO2 treatments. The results of this study suggest that S. droebachiensis occurring in the Kattegat might be pre-adapted to hypercapnia due to natural variability in pCO2 in its habitat. We show for the first time that some echinoderm species can actively compensate extracellular pH. Seawater pCO2 values of >200 Pa, which will occur in the Kattegat within this century during seasonal hypoxic events, can possibly only be endured for a short time period of a few weeks. Increases in anthropogenic CO2 emissions and leakages from potential sub-seabed CO2 storage (CCS) sites thus impose a threat to the ecologically and economically important species S. droebachiensis.