964 resultados para bow compensation
Resumo:
In this paper, we demonstrate through computer simulation and experiment a novel subcarrier coding scheme combined with pre-electrical dispersion compensation (pre-EDC) for fiber nonlinearity mitigation in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. As the frequency spacing in CO-OFDM systems is usually small (tens of MHz), neighbouring subcarriers tend to experience correlated nonlinear distortions after propagation over a fiber link. As a consequence, nonlinearity mitigation can be achieved by encoding and processing neighbouring OFDM subcarriers simultaneously. Herein, we propose to adopt the concept of dual phase conjugated twin wave for CO-OFDM transmission. Simulation and experimental results show that this simple technique combined with 50% pre-EDC can effectively offer up to 1.5 and 0.8 dB performance gains in CO-OFDM systems with BPSK and QPSK modulation formats, respectively.
Resumo:
In this paper, we demonstrate a novel fiber nonlinearity compensation technique for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) systems based on the transmission of phase-conjugated pilots (PCPs). In this scheme, a portion of OFDM subcarriers (up to 50%) is transmitted with its phase conjugates, which is used at the receiver to estimate the nonlinear distortions in the respective subcarriers and other subcarriers, which are not accompanied by PCPs. Simulation and experimental results show that by varying the PCP overhead, a performance improvement up to 4 dB can be achieved. In addition, the proposed technique can be effectively applied in both single polarization and polarization-division multiplexed systems, in both single channel and wavelength-division multiplexing systems, thus, offering highest flexibility in implementations.
Resumo:
Measuring and compensating the pivot points of five-axis machine tools is always challenging and very time consuming. This paper presents a newly developed approach for automatic measurement and compensation of pivot point positional errors on five-axis machine tools. Machine rotary axis errors are measured using a circular test. This method has been tested on five-axis machine tools with swivel table configuration. Results show that up to 99% of the positional errors of the rotary axis can be compensated by using this approach.
Resumo:
The concept of measurement-enabled production is based on integrating metrology systems into production processes and generated significant interest in industry, due to its potential to increase process capability and accuracy, which in turn reduces production times and eliminates defective parts. One of the most promising methods of integrating metrology into production is the usage of external metrology systems to compensate machine tool errors in real time. The development and experimental performance evaluation of a low-cost, prototype three-axis machine tool that is laser tracker assisted are described in this paper. Real-time corrections of the machine tool's absolute volumetric error have been achieved. As a result, significant increases in static repeatability and accuracy have been demonstrated, allowing the low-cost three-axis machine tool to reliably reach static positioning accuracies below 35 μm throughout its working volume without any prior calibration or error mapping. This is a significant technical development that demonstrated the feasibility of the proposed methods and can have wide-scale industrial applications by enabling low-cost and structural integrity machine tools that could be deployed flexibly as end-effectors of robotic automation, to achieve positional accuracies that were the preserve of large, high-precision machine tools.