977 resultados para binding free enthalpy
Resumo:
Employing aqueous tert-butyl hydroperoxide (70%) as an inexpensive reagent a useful methodology for the regioselective and chemoselective deprotection of terminal acetonide groups in aqueous medium is developed. A variety of acetonide derivatives on reaction with aqueous tert-butyl hydroperoxide in water:tert-butanol (1:1) furnish the corresponding acetonide deprotected diols in good yields. A large number of acid labile protecting functional groups and other functional moieties were found to be unaffected under the conditions employed for the present deprotection. This method has been successfully applied to sugar derivatives.
Resumo:
The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.
Resumo:
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.
Resumo:
Three-dimensional structures of the complexes of concanavalin A (ConA) with alpha(1-2) linked mannobiose, triose and tetraose have been generated with the X-ray crystal structure data on native ConA using the CCEM (contact criteria and energy minimization) method. All the constituting mannose residues of the oligosaccharide can reach the primary binding site of ConA (where methyl-alpha-D-mannopyranose binds). However, in all the energetically favoured complexes, either the non-reducing end or middle mannose residues of the oligosaccharide occupy the primary binding site. The middle mannose residues have marginally higher preference over the non-reducing end residue. The sugar binding site of ConA is extended and accommodates at least three alpha(1-2) linked mannose residues. Based on the present calculations two mechanisms have been proposed for the binding of alpha(1-2) linked mannotriose and tetraose to ConA.
Resumo:
The well-known linear relationship (T?S# =??H# +?, where 1 >? > 0,? > 0) between the entropy (?S#) and the enthalpy (?H#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantities? and?. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago.
Resumo:
Synthesis of several shape-specific hosts through heteroaromatic annulation on cis,syn,cis-triquinanedione 1 and X-ray crystal structure determination of one of them, 4a, is reported. Preliminary results of complexation between cleft 5a and diamines are reported.
Resumo:
The three crystal structures reported here provide details of the interactions of mannose and the mannosyl-alpha-1,3-mannose component of a pentamannose with banana lectin and evidence for the binding of glucosyl-alpha-1,2-glucose to the lectin. The known structures involving the lectin include a complex with glucosyl-beta-1,3-glucose. Modeling studies on the three disaccharide complexes with the reducing end and the nonreducing end at the primary binding site are also provided here. The results of the Xray and modeling studies show that the disaccharides with an alpha-1,3 linkage prefer to have the nonreducing end at the primary binding site, whereas the reducing end is preferred at the site when the linkage is beta-1,3 in mannose/glucose-specific beta-prism I fold lectins. In the corresponding galactose-specific lectins, however, alpha-1,3-linked disaccharides cannot bind the lectin with the nonreducing end at the primary binding site on account of steric clashes with an aromatic residue that occurs only when the lectin is galactose-specific. Molecular dynamics simulations based on the known structures involving banana lectin enrich the information on lectin-carbohydrate interactions obtained from crystal structures. They demonstrate that conformational selection as well as induced fit operate when carbohydrates bind to banana lectin.
Resumo:
NSP3, an acidic nonstructural protein, encoded by gene 7 has been implicated as the key player in the assembly of the 11 viral plus-strand RNAs into the early replication intermediates during rotavirus morphogenesis. To date, the sequence or NSP3 from only three animal rotaviruses (SA11, SA114F, and bovine UK) has been determined and that from a human strain has not been reported. To determine the genetic diversity among gene 7 alleles from group A rotaviruses, the nucleotide sequence of the NSP3 gene from 13 strains belonging to nine different G serotypes, from both humans and animals, has been determined. Based on the amino acid sequence identity as well as phylogenetic analysis, NSP3 from group A rotaviruses falls into three evolutionarily related groups, i.e., the SA11 group, the Wa group, and the S2 group. The SA 11/SA114F gene appears to have a distant ancestral origin from that of the others and codes for a polypeptide of 315 amino acids (aa) in length. NSP3 from all other group A rotaviruses is only 313 aa in length because of a 2-amino-acid deletion near the carboxy-terminus, While the SA114F gene has the longest 3' untranslated region (UTR) of 132 nucleotides, that from other strains suffered deletions of varying lengths at two positions downstream of the translational termination codon. In spite of the divergence of the nucleotide (nt) sequence in the protein coding region, a stretch of about 80 nt in the 3' UTR is highly conserved in the NSP3 gene from all the strains. This conserved sequence in the 3' UTR might play an important role in the regulation of expression of the NSP3 gene. (C) 1995 Academic Press, Inc.
Resumo:
Kinetic constants of MAb-hCG interactions have been determined using solid phase binding of I-125[hCG] to immobilized MAb. While association has been shown to follow the expected pattern, dissociation consists of at least two reversible steps, one with a rate constant of 0.0025 min(-1), and a second with a rate constant of 0.00023 min(-1). Validity of affinity constant measurements in the light of the complex reaction kinetics is discussed, A comparison between the method of surface plasmon resonance technology (BIAcore) and solid phase binding (SPB) for determination of kinetic parameters shows that SPB provides not only a cost-effective approach for determination of realtime kinetic parameters of macromolecular ligand-ligate interaction but also a method with several advantages over the BIAcore system in investigating the mechanism of antigen-antibody interaction.
Resumo:
The principle of the conservation of bond orders during radical-exchange reactions is examined using Mayer's definition of bond orders. This simple intuitive approximation is not valid in a quantitative sense. Ab initio results reveal that free valences (or spin densities) develop on the migrating atom during reactions. For several examples of hydrogen-transfer reactions, the sum of the reaction coordinate bond orders in the transition state was found to be 0.92 +/- 0.04 instead of the theoretical 1.00 because free valences (or spin densities) develop on the migrating atom during reactions. It is shown that free valence is almost equal to the square of the spin density on the migrating hydrogen atom and the maxima in the free valence (or spin density) profiles coincide (or nearly coincide) with the saddle points in the corresponding energy profiles.
Resumo:
The present paper reports the results of a theoretical study of the forces and factors driving the solubilization of n-alkane solubilizates into the micellar core of some non-ionic surfactants, based on a micellar model which includes the cavity forming free energy as a component of micellization. The solubilizate is n-decane and the non-ionic surfactants considered are n-decyl-polyoxyethylene surfactants. The extent of solubilization, i.e. the mole fraction of the solubilizate within the core has been calculated. The results indicate that the incorporated solubilizate has more translational and rotational degrees of freedom as compared to those of the tail parts of the surfactants present in the core. This drives the total free energy of aggregation after solubilization into a more favourable direction. The results are in fair agreement with the experimental results.
Resumo:
he chemical potential of carbon in diamond, relative to its value in graphite, has been directly determined using a solid state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The cell can be represented as Pt, C(graphite) + CaC2 + CaF2double vertical barCaF2double vertical barCaF2 + CaC2 + C(diamond), Pt The reversible emf of this cell is directly related by the Nernst equation to the Gibbs free energy change for the conversion of diamond to graphite. The difference in the chemical potential of carbon in the two crystal structures varies linearly with temperature in the range 940 to 1260 K ?C(diamond) ? ?C(graphite) = 1100 + 4.64T (±50) J mol?1 On the average, the values given by the equation are 320 J mol?1 less positive than the currently accepted ones based on calorimetric studies. The difference is primarily in the enthalpy term.
Resumo:
The crystal structure of tetrakis(cytosine)copper(II) perchlorate dihydrate has been determined. All the hydrogen atoms were obtained from Fourier-difference synthesis. The geometry around. copper is a bicapped octahedron (4 + 2 + 2*). The adjacent cytosine rings are oriented head-to-tail with respect to each other and are roughly at right angles to the co-ordination plane. The exocyclic oxo groups form an interligand, intracomplex hydrogen-bonding network above and below the co-ordination plane with the exocyclic amino groups of alternate cytosine bases. The EPR and electronic spectra are consistent with the retention of the solid-state structure in solution. The steric effect of the C(2)=O group of cytosine is offset by the presence of the intracomplex hydrogen-bonding network. The trend in Ei values of Cu-II-Cu-I couples for 1.4 complexes of cytosine, cytodine, pyridine, 2-methylpyridine and N-methylimidazole suggests that both steric effects and pi-delocalization in imidazole and pyridine ligands and the steric effect of C(2)=O in pyrimidine ligands are important in stabilising Cu-I relative to Cu-II.
Resumo:
Time scales associated with activated transitions between glassy metastable states of a free-energy functional appropriate for a dense hard-sphere system are calculated by using a new Monte Carlo method for the local density variables. In particular, we calculate the time the system, initially placed in a shallow glassy minimum of the free-energy, spends in the neighborhood of this minimum before making a transition to the basin of attraction of another free-energy minimum. This time scale is found to increase as the average density is increased. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This time scale does not show any evidence of increasing with sample size
Resumo:
The catalytic conversion ATP + AMP -> 2ADP by the enzyme adenylate kinase (ADK) involves the binding of one ATP. molecule to the LID domain and one AMP molecule to the NMP domain. The latter is followed by a. phosphate transfer and then the release of two ADP molecules. We have computed a novel two-dimensional configurational free energy surface (2DCFES), with one reaction coordinate each for the LID and the NMP domain motions, while considering explicit water interactions. Our computed 2DCFES clearly reveals the existence of a stable half-open half-closed (HOHC) intermediate stale of the enzyme. Cycling of the enzyme through the HOHC state reduces the conformational free energy barrier for. the reaction by about 20 kJ/mol. We find that the stability of the HOHC state (missed in all earlier studies with implicit solvent model) is largely because of the increase of specific interactions of the polar amino acid side chains with water, particularly with the arginine and the histidine residues. Free energy surface of the LID domain is rather rugged, which can conveniently slow down LID's conformational motion, thus facilitating a new substrate capture after the product release in the catalytic cycle.