1000 resultados para antimalarial drug
Resumo:
Background and aims: Few studies have examined whether subjective experiences during first cannabis use are related to other illicit drug (OID) use. This study investigated this topic. Methods: Baseline data from a representative sample of young Swiss men was obtained from an ongoing Cohort Study on Substance Use Risk Factors (N ¼ 5753). Logistic regressions were performed to examine the relationships between cannabis use and of subjective experiences during first cannabis use with 15 OID. Results: Positive experiences increased the likelihood of using hallucinogens (hallucinogens, salvia divinorum, spice; p50.015), stimulants (speed, ecstasy, cocaine, amphetamines/methamphetamines; p50.006) and also poppers, research chemicals, GHB/GBL, and crystal meth (p50.049). Sniffed drugs (poppers, solvents for sniffing) and ''hard'' drugs (heroin, ketamine, research chemicals, GHB/GBL and crystal meth) were more likely to be used by participants who experienced negative feelings on first use of cannabis (p50.034). Conclusion: Subjective feelings seemed to amplify the association of cannabis with OID. The risk increased for drugs with effects resembling feelings experienced on first cannabis use. Negative experiences should also be a concern, as they were associated with increased risk of using the ''hardest'' illicit drugs.
Resumo:
Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.
Resumo:
PURPOSE OF REVIEW: Recent advances in nanotechnology have addressed some of the issues related to lack of selectivity and nonspecific toxicities associated with conventional chemotherapy. Nanoparticles are therapeutic carriers that can be fine tuned for specific application and for passive or active tumor targeting. RECENT FINDINGS: Although the nanoparticle field is rapidly expanding, there are to date only six nanoparticle-based drug delivery platforms and two antibody-drug conjugates that are clinically approved for cancer therapy. Here, we review the clinical data of liposomal anthracyclines, nanoparticle formulations of paclitaxel and trastuzumab emtansine. We then briefly comment on efficacy and safety issues of nanoparticles, as well as on the next-generation nanoparticles for cancer therapy. SUMMARY: The emerging development of cancer nanotechnology offers the opportunity of reinvestigating the potential of cytotoxic agents, improving tumor targeting and drug delivery, leading to better safety profile and antitumor activity. Adding specificity to nanoparticles may allow personalization of cancer therapy using chemotherapy.
Resumo:
Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.
Resumo:
Factors modifying drug and placebo responses in randomized trials for bipolar mania. Yildiz A, Vieta E, Tohen M, Baldessarini RJ. Source Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey. agul_yildiz@hotmail.com Abstract Randomized placebo-controlled trials (RCTs) are standard for assessing efficacy and safety of treatments. We pursued preliminary indications that some factors are associated differentially with responses to placebo or drugs in RCTs for bipolar mania. We meta-analysed data from RCTs to assess influences of study-site count, subjects' age, sex distribution, diagnostic subgroups, clinical features, trial-completion rates, and publication year on mean difference (MD) in mania ratings between intake and final assessments. In 38 RCTs involving 3812 placebo-treated and 6988 drug-treated patients, symptomatic improvement was similar in placebo arms of trials of effective (6.77, 95% CI 5.77-7.76) and ineffective (7.61, 95% CI 5.47-8.75) drugs. Lesser placebo responses (MD) and greater drug-placebo differences (Hedges' g) were associated with fewer study sites, younger patients' age, and male sex. More patients with initial psychotic features and more trial completion in drug arms were associated with greater drug-associated improvement (MD) and drug-placebo contrast (Hedges' g), whereas more mixed-state diagnoses decreased both measures. Identifying modifying factors can support more efficient and cost-effective designs of therapeutic trials. In trials for mania, fewer sites may limit placebo response and enhance drug-placebo contrasts.
Resumo:
Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.
Resumo:
Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.
Resumo:
Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. BoxBehnken experimental design was employed as statistical tool to optimize the formulation variables, X1 (Cremophor® EL), X2 (Capmul® MCM-C8), and X3 (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X1, X2, and X3) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in td parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption.
Resumo:
BACKGROUND: Artemether-lumefantrine is the most widely used artemisinin-based combination therapy for malaria, although treatment failures occur in some regions. We investigated the effect of dosing strategy on efficacy in a pooled analysis from trials done in a wide range of malaria-endemic settings. METHODS: We searched PubMed for clinical trials that enrolled and treated patients with artemether-lumefantrine and were published from 1960 to December, 2012. We merged individual patient data from these trials by use of standardised methods. The primary endpoint was the PCR-adjusted risk of Plasmodium falciparum recrudescence by day 28. Secondary endpoints consisted of the PCR-adjusted risk of P falciparum recurrence by day 42, PCR-unadjusted risk of P falciparum recurrence by day 42, early parasite clearance, and gametocyte carriage. Risk factors for PCR-adjusted recrudescence were identified using Cox's regression model with frailty shared across the study sites. FINDINGS: We included 61 studies done between January, 1998, and December, 2012, and included 14 327 patients in our analyses. The PCR-adjusted therapeutic efficacy was 97·6% (95% CI 97·4-97·9) at day 28 and 96·0% (95·6-96·5) at day 42. After controlling for age and parasitaemia, patients prescribed a higher dose of artemether had a lower risk of having parasitaemia on day 1 (adjusted odds ratio [OR] 0·92, 95% CI 0·86-0·99 for every 1 mg/kg increase in daily artemether dose; p=0·024), but not on day 2 (p=0·69) or day 3 (0·087). In Asia, children weighing 10-15 kg who received a total lumefantrine dose less than 60 mg/kg had the lowest PCR-adjusted efficacy (91·7%, 95% CI 86·5-96·9). In Africa, the risk of treatment failure was greatest in malnourished children aged 1-3 years (PCR-adjusted efficacy 94·3%, 95% CI 92·3-96·3). A higher artemether dose was associated with a lower gametocyte presence within 14 days of treatment (adjusted OR 0·92, 95% CI 0·85-0·99; p=0·037 for every 1 mg/kg increase in total artemether dose). INTERPRETATION: The recommended dose of artemether-lumefantrine provides reliable efficacy in most patients with uncomplicated malaria. However, therapeutic efficacy was lowest in young children from Asia and young underweight children from Africa; a higher dose regimen should be assessed in these groups. FUNDING: Bill & Melinda Gates Foundation.
Resumo:
Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae.
Resumo:
Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.
Resumo:
The study of the reactivity of three 1-(2-dimethylaminoethyl)-1H-pyrazole derivatives of general formula [1-(CH2)2NMe2}-3,5-R2-pzol] {where pzol represents pyrazole and Rdouble bond; length as m-dashH (1a), Me (1b) or Ph (1c)} with [MCl2(DMSO)2] (Mdouble bond; length as m-dashPt or Pd) under different experimental conditions allowed us to isolate and characterize cis-[M{κ2-N,N′-{[1-(CH2)2NMe2}-3,5-R2-pzol])}Cl2] {MMdouble bond; length as m-dashPtPt (2a-2c) or Pd (3a-3c)} and two cyclometallated complexes [M{κ3-C,N,N′-{[1-(CH2)2NMe2}-3-(C5H4)-5-Ph-pzol])}Cl] {Mdouble bond; length as m-dashPt(II) (4c) or Pd(II) (5c)}. Compounds 4c and 5c arise from the orthometallation of the 3-phenyl ring of ligand 1c. Complex 2a has been further characterized by X-ray crystallography. Ligands and complexes were evaluated for their in vitro antimalarial against Plasmodium falciparum and cytotoxic activities against lung (A549) and breast (MDA MB231 and MCF7) cancer cellular lines. Complexes 2a-2c and 5c exhibited only moderate antimalarial activities against two P. falciparum strains (3D7 and W2). Interestingly, cytotoxicity assays revealed that the platinacycle 4c exhibits a higher toxicity than cisplatin in the three human cell lines and that the complex 2a presents a remarkable cytotoxicity and selectivity in lung (IC50 = 3 μM) versus breast cancer cell lines (IC50 > 20 μM). Thus, complexes 2c and 4c appear to be promising leads, creating a novel family of anticancer agents. Electrophoretic DNA migration studies in presence of the synthesized compounds have been performed, in order to get further insights into their mechanism of action.