964 resultados para antigen specificity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trial was carried out to investigate parasite host specificity and to analyse the dynamics of infection with nematodes parasitizing sheep and catt:le raised together or separately in São Paulo state, Brazil, and, also to clarify doubts about the systematics of species of the genus Haemonchus on the basis of cytological and morphological studies. Ten steers and 32 ewes were randomly assigned to three paddocks (P), as follows: P1, 5 steers; P2, 5 steers and 16 ewes; and P3, 16 ewes. The animals remained on these paddocks in continuous grazing throughout the trial (1-yr period). Faecal exams and larvae counting on pasture were performed fortnightly. Once a month two tracer lambs were placed in each paddock, while two tracer calves were also placed, but only in the eighth month of the trial. All these animals were slaughtered for worm identification and counting. At the end of the trial, one steer and one ewe from P2, which showed high faecal egg counts, were also slaughtered for the same purpose. Nematodes identified cytogenetically as H. placei presented spicule hooks longer than those identified as H. contortus. The following distribution of parasites in cattle and sheep was observed: Bunostomum phlebotomum, H. similis, Mammomonogamus laryngeus strongly adapted to cattle, H. placei and Cooperia punctata more adapted to cattle than to sheep, Trichostrongylus axel and C. spatulata apparently more adapted to cattle, T. colubriformis strongly adapted to sheep, H. contortus more adapted to sheep than to cattle and C. curticei apparently more adapted to sheep. Cross-infection was shown to occur involving some species, however, with time the animals apparently eliminate the species that are not well adapted to them. Therefore, grazing management systems using cattle and sheep appear to be promising for worm control in southeastern Brazil. (C) 1997 Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antineoplastic chemotherapeutic agents may indirectly activate dendritic cells (DCs) by inducing the release of danger signals from dying tumor cells. Whereas the direct cytotoxic or inhibitory effect of conventional chemotherapy on DCs has been reported, modulation of DC function by chemotherapeutic agents in low noncytotoxic concentrations has not yet been investigated. We have tested the effects of different classes of antineoplastic chemotherapeutic agents used in low noncytotoxic concentrations on the Ag-presenting function of DCs. We revealed that paclitaxel, doxorubicin, mitomycin C, and methotrexate up-regulated the ability of DCs to present Ags to Ag-specific T cells. Stimulation of DC function was associated with the up-regulation of expression of Ag-processing machinery components and costimulatory molecules on DCs, as well as increased IL-12p70 expression. However, the ability of DCs treated with paclitaxel, methotrexate, doxorubicin, and vinblastine to increase Ag presentation to Ag-specific T cells was abolished in DCs generated from IL-12 knockout mice, indicating that up-regulation of Ag presentation by DCs is IL-12-dependent and mediated by the autocrine or paracrine mechanisms. At the same time, IL-12 knockout and wild-type DCs demonstrated similar capacity to up-regulate OVA presentation after their pretreatment with low concentrations of mitomycin C and vincristine, suggesting that these agents do not utilize IL-12-mediated pathways in DCs for stimulating Ag presentation. These findings reveal a new mechanism of immunopotentiating activity of chemotherapeutic agents-a direct immunostimulatory effect on DCs (chemomodulation)-and thus provide a strong rationale for further assessment of low-dose chemotherapy given with DC vaccines for cancer treatment. The Journal of Immunology, 2009, 183: 137-144.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallographic screening has been used to identify new inhibitors for potential target for drug development. Here, we describe the application of the crystallographic screening to assess the structural basis of specificity of ligands against a protein target. The method is efficient and results in detailed crystallographic information. The utility of the method is demonstrated in the study of the structural basis for specificity of ligands for human purine nucleoside phosphorylase (PNP). Purine nucleoside phosphorylase catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. This enzyme is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This methodology may help in the future development of a new generation of PNP inhibitors.