984 resultados para antigen binding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable bisubstrate ligands of phosphoglycerate kinase (PGK) have been synthesised with AMP or ADP conjugated to hydrolytically-stable, symmetrical analogues of 1,3-bisphosphoglycerate and their binding to yeast PGK evaluated. Their Kds decrease with net negative charge, with a penta-anionic analogue 7 showing highest affinity - in accordance with its approximation to the transition state for the reaction catalysed by PGK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a chronic idiopathic disease of the esophagus has emerged, which is now known as eosinophilic esophagitis (EoE). Incomplete knowledge regarding the pathogenesis of EoE has limited treatment options. EoE is known to be a Th2-type immune-mediated disorder. Based on previous studies in both patients and experimental models, it is possible that an abnormal reaction to antigen mediates the pathophysiology of EoE. In this thesis, symptoms and signs unique to EoE were identified by an age-matched, case-controlled study of 326 patients with EoE and gastroesophageal reflux disease. The molecular mechanisms involved in antigen detection in the esophagus, in relation to EoE were then investigated. Esophageal epithelial cells were found, for the first time, to be capable of acting as non-professional antigen presenting cells, with the ability to engulf, process and present antigen on MHC class II to T helper lymphocytes. Antigen presentation by esophageal epithelial cells was induced by interferon-γ, which is increased in biopsies from patients with EoE. Next, it was discovered that esophageal epithelial cell lines expressed functional toll-like receptor (TLR) 2 and TLR3, but in esophageal mucosal biopsies only infiltrating immune cells (including eosinophils) expressed TLR2 and TLR3. Finally, the potential involvement of IgE in the pathogenesis of esophageal inflammation was investigated. IgE in the esophagus was found to be present on mast cells, which are increased in density in the esophageal mucosae of patients with EoE and especially those with a history of atopy. Mechanisms of antigen detection may mediate the pathophysiology of EoE in the esophagus through antigen presentation by epithelial cells, detection by TLRs on immune cells and detection through IgE on mucosal mast cells. Together, these findings demonstrate that mechanisms of antigen detection may actually contribute to the pathophysiology of EoE. Through increased understanding of the mechanisms of EoE, the results of this thesis may contribute to future therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main success of my thesis has been to establish the mechanism by which antifreeze proteins (AFPs) bind irreversibly to ice crystals, and hence prevent their growth. AFPs organize ice-like water on their ice-binding site, which then merges and freezes with the quasi-liquid layer of ice. This was revealed from studying the exceptionally large (ca. 1.5-MDa) Ca 2+-dependent AFP from the Antarctic bacterium Marinomonas primoryensis (MpAFP). The 34-kDa antifreeze- active region of MpAFP was predicted to fold as a novel Ca 2+-binding β-helix. Site-directed mutagenesis confirmed the model and demonstrated that its ice-binding site (IBS) consisted of solvent-exposed Thr and Asx parallel arrays on the Ca 2+-binding turns. The X-ray crystal structure of the antifreeze region was solved to a resolution of 1.7 Å. Two of the four molecules within the unit cell of the crystal had portions of their IBSs freely exposed to solvent. Identical clathrate-like cages of water molecules were present on each IBS. These waters were organized by the hydrophobic effect and anchored to the protein via hydrogen bonds. They matched the spacing of water molecules in an ice lattice, demonstrating that anchored clathrate waters bind AFPs to ice. This mechanism was extended to other AFPs including the globular type III AFP from fishes. Site-directed mutagenesis and a modified ice-etching technique demonstrated this protein uses a compound ice-binding site, comprised of two flat and relatively hydrophobic surfaces, to bind at least two planes of ice. Reinvestigation of several crystal structures of type III AFP identified anchored clathrate waters on the solvent-exposed portion of its compound IBS that matched the spacing of waters on the primary prism plane of ice. Ice nucleation proteins (INPs), which can raise the temperature at which ice forms in solution to just slightly below 0oC, have the opposite effect to AFPs. A novel dimeric β-helical model was proposed for the INP produced by the bacterium Pseudomonas borealis. Molecular dynamics simulations showed that INPs are also capable of ordering water molecules into an ice- like lattice. However, their multimerization brings together sufficient ordered waters to form an ice nucleus and initiate freezing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is well established that benzimidazole (BZMs) compounds exert their therapeutic effects through binding to helminth beta-tubulin and thus disrupting microtubule-based processes in the parasites, the precise location of the benzimidazole-binding site on the beta-tubulin molecule has yet to be determined. In the present study, we have used previous experimental data as cues to help identify this site. Firstly, benzimidazole resistance has been correlated with a phenylalanine-to-tyrosine substitution at position 200 of Haemonchus contortus beta-tubulin isotype-I. Secondly, site-directed mutagenesis studies, using fungi, have shown that other residues in this region of the protein can influence the interaction of benzimidazoles with beta-tubulin. However, the atomic structure of the alphabeta-tubulin dimer shows that residue 200 and the other implicated residues are buried within the protein. This poses the question: how might benzimidazoles interact with these apparently inaccessible residues? In the present study, we present a mechanism by which those residues generally believed to interact with benzimidazoles may become accessible to the drugs. Furthermore, by docking albendazole-sulphoxide into a modelled H. contortus beta-tubulin molecule we offer a structural explanation for how the mutation conferring benzimidazole resistance in nematodes may act, as well as a possible explanation for the species-specificity of benzimidazole anthelmintics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small 1,000-bp fragments of genomic DNA obtained from human malignant breast cancer cell lines when transfected into a benign rat mammary cell line enhance transcription of the osteopontin gene and thereby cause the cells to metastasize in syngeneic rats. To identify the molecular events underlying this process, transient cotransfections of an osteopontin promoter-reporter construct and fragments of one metastasis-inducing DNA (Met-DNA) have identified the active components in the Met-DNA as the binding sites for the T-cell factor (Tcf) family of transcription factors. Incubation of cell extracts with active DNA fragments containing the sequence CAAAG caused retardation of their mobilities on polyacrylamide gels, and Western blotting identified Tcf-4, beta-catenin, and E-cadherin in the relevant DNA complexes in vitro. Transfection of an expression vector for Tcf-4 inhibited the stimulated activity of the osteopontin promoter-reporter construct caused by transiently transfected active fragments of Met-DNA or permanently transfected Met-DNA. This stimulated activity of the osteopontin promoter-reporter construct is accompanied by an increase in endogenous osteopontin mRNA but not in fos or actin mRNAs in the transfected cells. Permanent transfection of the benign rat mammary cell line with a 20-bp fragment from the Met-DNA containing the Tcf recognition sequence CAAAG caused an enhanced permanent production of endogenous osteopontin protein in vitro and induced the cells to metastasize in syngeneic rats in vivo. The corresponding fragment without the CAAAG sequence was without either effect. Therefore, the regulatory effect of the C9-Met-DNA is exerted, at least in part, by a CAAAG sequence that can sequester the endogenous inhibitory Tcf-4 and thereby promote transcription of osteopontin, the direct effector of metastasis in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the evolutionarily conserved septin family of genes are emerging as key components of several cellular processes including membrane trafficking, cytokinesis, and cell-cycle control events. SEPT9 has been shown to have a complex genomic architecture, such that up to 15 different isoforms are possible by the shuffling of five alternate amino termini and three alternate carboxy termini. Genomic and transcriptional alterations of SEPT9 have been associated with neoplasia. The present study has used a Sept9-specific antibody to determine the pattern of isoform expression in a range of tumour cell lines. Western blot analysis indicated considerable variation in the relative amounts and isoform content of Sept9. Immunofluorescence studies showed a range of patterns of cytoplasmic localization ranging from mainly particulate to mainly filamentous. Expression constructs were also generated for each amino terminal isoform to investigate the patterns of localization of individual isoforms and the effects on cells of ectopic expression. The present study shows that the epsilon isoform appears filamentous in this overexpression system while the remaining isoforms are particulate and cytoplasmic. Transient transfection of individual constructs into tumour cell lines results in cell-cycle perturbation with a G2/M arrest and dramatic growth suppression, which was greatest in cell lines with the lowest amounts of endogenous Sept9. Similar phenotypic observations were made with GTP-binding mutants of all five N-terminal variants of Sept9. However, dramatic differences were observed in the kinetics of accumulation of wild-type versus mutant septin protein in transfected cells. In conclusion, the present study shows that the expression patterns of Sept9 protein are very varied in a panel of tumour cell lines and the functional studies are consistent with a model of septin function as a component of a molecular scaffold that contributes to diverse cellular functions. Alterations in the levels of Sept9 protein by overexpression of individual isoforms can clearly perturb cellular behaviour and may thus provide a mechanistic explanation for observations of deranged septin expression in neoplasia. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.