981 resultados para angular displacement measurement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a measurement of B0- B0 mixing in events produced by electron-positron annihilation at a center of mass energy of 29 GeV. The data were taken by the Mark II detector in the PEP storage ring at the Stanford Linear Accelerator Center between 1981 and 1987, and correspond to a total integrated luminosity of 224pb-1.

We used a new method, based on the kinematics of hadronic events containing two leptons, to provide a measurement of the probability, x, that a hadron, initially containing a b (b) quark decays to a positive (negative) lepton to be X = 0.17+0.15-0.08, with 90% confidence level upper and lower limits of 0.38 and 0.06, respectively, including all estimated systematic errors. Because of the good separation of signal and background, this result is relatively insensitive to various systematic effects which have complicated previous measurements.

We interpret this result as evidence for the mixing of neutral B mesons. Based on existing B0d mixing rate measurements, and some assumptions about the fractions of B0d and B0s mesons present in the data, this result favors maximal mixing of B0s mesons, although it cannot rule out zero B0s mixing at the 90% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of a Michelson interferometer with a self-pumped phase-conjugate mirror to measure small vibration amplitudes of a rough surface is described. The distorted wave front of the light that is diffusely reflected from the rough surface is restored by phase conjugation to provide an interference signal with a high signal-to-noise ratio. The vibration amplitudes of a stainless-steel sample are measured with a precision of similar to 5 nm. (C) 2000 Optical Society of America OCIS codes: 120.3180, 190.5040, 120.7280.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an optical apparatus enabling the measurement of spherical power, cylindrical power, and optical center coordinates of ophthalmic lenses. The main advantage of this new focimeter is to provide a full bidimensional mapping of the characteristics of ophthalmic glasses. This is made possible thanks to the use of a large-area and high-resolution position-sensitive detector. We describe the measurement principle and present some typical mappings, particularly for progressive lenses. We then discuss the advantages in terms of speed and versatility of such a focimeter for the measurement of complex lens mappings. (C) 2002 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fiber Bragg grating temperature sensor is proposed and experimentally demonstrated with a long-period grating as a linear response edge filter to convert wavelength into intensity-encoded information for interrogation. The sensor is embedded into an aluminum substrate with a larger coefficient of thermal expansion to enhance its temperature sensitivity. A large dynamic range of 110 degreesC and a high resolution of 0.02 degreesC are obtained in the experiments. The technique can be used for multiplexed measurements with one broadband source and one long-period grating, and therefore is low Cost. (C) 2004 Society of PhotoOptical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered granular systems have been a subject of active research for decades. Due to their rich dynamic response and nonlinearity, ordered granular systems have been suggested for several applications, such as solitary wave focusing, acoustic signals manipulation, and vibration absorption. Most of the fundamental research performed on ordered granular systems has focused on macro-scale examples. However, most engineering applications require these systems to operate at much smaller scales. Very little is known about the response of micro-scale granular systems, primarily because of the difficulties in realizing reliable and quantitative experiments, which originate from the discrete nature of granular materials and their highly nonlinear inter-particle contact forces.

In this work, we investigate the physics of ordered micro-granular systems by designing an innovative experimental platform that allows us to assemble, excite, and characterize ordered micro-granular systems. This new experimental platform employs a laser system to deliver impulses with controlled momentum and incorporates non-contact measurement apparatuses to detect the particles’ displacement and velocity. We demonstrated the capability of the laser system to excite systems of dry (stainless steel particles of radius 150 micrometers) and wet (silica particles of radius 3.69 micrometers, immersed in fluid) micro-particles, after which we analyzed the stress propagation through these systems.

We derived the equations of motion governing the dynamic response of dry and wet particles on a substrate, which we then validated in experiments. We then measured the losses in these systems and characterized the collision and friction between two micro-particles. We studied wave propagation in one-dimensional dry chains of micro-particles as well as in two-dimensional colloidal systems immersed in fluid. We investigated the influence of defects to wave propagation in the one-dimensional systems. Finally, we characterized the wave-attenuation and its relation to the viscosity of the surrounding fluid and performed computer simulations to establish a model that captures the observed response.

The findings of the study offer the first systematic experimental and numerical analysis of wave propagation through ordered systems of micro-particles. The experimental system designed in this work provides the necessary tools for further fundamental studies of wave propagation in both granular and colloidal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method using two prisms for measurement of small dynamic angles is proposed in which the measurement is based on a simple tangent equation and a phase-modulating interferometer with a laser diode to measure dynamic optical path differences with higher accuracy. Owing to the simple tangent equation, the symmetry requirement on the two prisms in the optical configuration is eliminated, and easy measurement of the separations between two parallel beams with a position-sensitive detector is achieved. Small-dynamic-angle measurements are experimentally demonstrated with high accuracy. (C) 2007 Society of Photo-Optical Instrumentation Engineers.