965 resultados para angiotensin 2 receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibromuscular dysplasia (FMD) is an important cause of renal artery stenosis, particularly in young females. Polymorphisms of the renin-angiotensin (RA) system have been implicated in the pathogenesis of hypertension and atherosclerotic vascular disease, and may play a role in the development of FMD. Examination of polymorphisms by PCR for angiotensin-converting enzyme (ACE) I/D, angiotensin II type 1 receptor (AT(1)R) A1166C and angiotensinogen (AGT) M235T and T174M was undertaken in 43 patients with typical multifocal renal arterial FMD (MF-FMD) and in 89 controls. The age of NIF-FMD patients at the time of diagnosis of hypertension did not differ (38.6 + 11.1 years vs 35.5 +/- 10.3 years, P = 0.12) from controls and the proportion (95% vs 86%, P = 0.14) of females was similar. Allele frequencies did not differ significantly between groups, except that MF-FMD patients had a significantly higher frequency of the ACE I allele than control subjects (0.62 vs 0.47, P = 0.026). Since the ACE I allele is associated with lower circulating ACE levels and possibly lower tissue levels of angiotensin II (Ang II), and since Ang II modulates vascular smooth muscle cell growth and synthetic activity, the I allele might predispose to defective remodelling of the arterial media, and thus to the development of MF-FMD. This contrasts with atherosclerotic renal artery stenosis, coronary stent restenosis and carotid intimal thickening, which are diseases affecting the arterial intima, and which are associated with increased frequency of the D allele.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary aldosteronism (PAL) may be as much as ten times more common than has been traditionally thought, with most patients normokalemic. The study of familial varieties has facilitated a fuller appreciation of the nature and diversity of its clinical, biochemical, morphological and molecular aspects. In familial hyperaldosteronism type I (FH-I), glucocorticoid-remediable PAL is caused by inheritance of an ACTH-regulated, hybrid CYP11B1/CYP11B2 gene. Genetic testing has greatly facilitated diagnosis. Hypertension severity varies widely, demonstrating relationships with gender, affected parent's gender, urinary kallikrein level, degree of biochemical disturbance and hybrid gene crossover point position. Analyses of aldosterone/PRA/cortisol 'day-curves' have revealed that (1) the hybrid gene dominates over wild type CYP11B2 in terms of aldosterone regulation and (2) correction of hypertension in FH-I requires only partial suppression of ACTH, and much smaller glucocorticoid doses than those previously recommended. Familial hyperaldosteronism type II is not glucocorticoid-remediable, and is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL. In one informative family available for linkage analysis, FH-II does not segregate with either the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL and other curable or specifically treatable forms of hypertension. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocyte macrophages (M phi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to M phi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca2+/Mg2+ enhanced DV binding. This argues against involvement of beta (2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isolation and characterisation of a new macrocyclic hexaamine trans-6,13-bis(ferrocenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane (L-2) bearing two ferrocenyl groups appended to its exocyclic amines is reported. The crystal structures of L-2 and its dihydrochloride salt L-2. 2HCl . 2H(2)O have been determined. In the latter case cation-anion hydrogen bonding is observed in the solid state. Substrate binding by the electroactive L-2 in MeCN-CH2Cl2 solution has been examined by cyclic voltammetry and reveals the receptor electrochemically to recognise benzoate and chloride anions. The macrocyclic N-donors may also bind transition metal cations such as Cu-II and Zn-II.