962 resultados para algebraic cryptanalysis
Resumo:
The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.
Resumo:
We study a one-dimensional lattice model of interacting spinless fermions. This model is integrable for both periodic and open boundary conditions; the latter case includes the presence of Grassmann valued non-diagonal boundary fields breaking the bulk U(1) symmetry of the model. Starting from the embedding of this model into a graded Yang-Baxter algebra, an infinite hierarchy of commuting transfer matrices is constructed by means of a fusion procedure. For certain values of the coupling constant related to anisotropies of the underlying vertex model taken at roots of unity, this hierarchy is shown to truncate giving a finite set of functional equations for the spectrum of the transfer matrices. For generic coupling constants, the spectral problem is formulated in terms of a functional (or TQ-)equation which can be solved by Bethe ansatz methods for periodic and diagonal open boundary conditions. Possible approaches for the solution of the model with generic non-diagonal boundary fields are discussed.