982 resultados para ZnO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO2 and with magnetic nanoparticles such as Fe3O4, CoFe2O4, and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction of CO with Cu clusters deposited on a ZnO(0001) crystal and on ZnO/Zn surfaces (prepared in the electron spectrometer) has been examined by UV and X-ray photoelectron spectroscopy. The interaction is stronger with the small Cu clusters deposited on ZnO/Zn surfaces. Interaction of CO is evert stronger with annealed Cu/ZnO/Zn surfaces where Cu-Zn alloy particles are present. Copyright (C) 1996 Published by Elsevier Science Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have been carried out in glasses containing Fe2O3, V2O5, and Fe2O3 + V2O5. Mossbauer studies in the ZnO-B2O3-Fe2O3 system show that iron is present as Fe3+ with tetrahedral coordination and that the isomer shift and the quadrupole splitting decrease with increase of Fe2O3 Content; similarly, the isomer shift and quadrupole splitting are also found to decrease with increasing ZnO. On the other hand, in the Na2O-ZnO-B2O3-Fe2O3 system, the isomer shift increases with Na2O or ZnO while the quadrupole splitting is fairly insensitive. Electron paramagnetic resonance in the ZnO-B2O3-Fe2O3 system shows signals at g = 4.20 and 2.0, whose intensity and linewidth show strong dependence on Fe2O3 content. In the ZnO-B2O3-V2O5 system, electron paramagnetic resonance shows that vanadium is present as the vanadyl complex, and the hyperfine coupling constants, A(parallel-to) and A(perpendicular-to) decrease with increasing V2O5 content; on the other hand, g(parallel-to) decreases and g(perpendicular-to) increases slightly, indicating an increase in tetragonal distortion. Zinc borate glasses containing Fe2O3 + V2O5 do not show the hyperfine structure of V4+ due to the interaction between Fe3+ and V4+

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of aluminosilicate (Al2SiO5) on the upturn characteristics of ZnO varistor ceramics has been investigated. Addition of Al2SiO5 shifts the point of upturn above 10(4) A cm(-2). The extended nonlinearity in the high current density region is better correlatable to the presence of higher density of trap stales and changing pattern of trap depths at the grain boundary interface as much as the grain interior conductivity. Microstructure studies show the formation and involvement of a liquid phase during sintering. The secondary phases, predominantly are antimony spinel, Zn7Sb2O12, zinc silicate, Zn2SiO4 and magnesium aluminium silicate. MgAl2Si3O10. Energy dispersive X-ray analyses (EDAX) show that Al and Si are distributed more in the grain boundaries and within the secondary phases than in the grain interiors. Capacitance-voltage analyses and dielectric dispersion studies indicate the presence of negative capacitance and associated resonance, indicative of the oscillatory charge redistribution involving increased trapping at the interface states. The admittance spectroscopy data show that the type of trap slates remains unaltered whereas the addition of Al2SiO5 increases the density of low energy traps. (C) 1997 Published by Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous solutions of acetates and nitrates of zinc and cobalt have been spray decomposed to study the production of extended solid solutions in the ZnO-CoO system. Examination of the products of a variety of synthesis conditions indicates that up to 70% CoO may be retained in the solid solution in the wurzite phase, even though a comparison of the equilibrium solubility in the phase diagram might be expected to favor the formation of a rock-salt-based solid solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we demonstrated a very general route to monolithic macroporous materials prepared without the use of templates (Rajamathi et al. J. Mater. Chem. 2001, 11, 2489). The route involves finding a precursor containing two metals, A and B, whose oxides are largely immiscible. Firing of the precursor followed by suitable sintering results in a monolith from which one of the oxide phases can be chemically leached out to yield a macroporous mass of the other oxide phase. The metals A and B that we employed in the demonstration were Ni and Zn. From the NiO-ZnO monolith that was obtained by decomposing the precursor, ZnO could be leached out at high pH to yield macroporous NiO. In the present work, we show that combustion-chemical (also called self-propagating) decomposition of a mixture of Ni and Zn nitrates with urea as a fuel yields an intimate mixture of the oxides that can be sintered and leached with alkali to form a macroporous NiO monolith. The new process that we present here thereby avoids the need for a crystalline single-source precursor. A novel and unanticipated aspect of the present work is that the combination of high temperatures and rapid quenching associated with combustion synthesis results in an intimate mixture of wurtzite ZnO and the metastable rock-salt Ni1-xZnxO where x is about 0.3. Leaching this monolith with alkali gives a macroporous mass of rock-salt Ni1-xZnxO, which upon reduction in H-2/Ar forms macroporous Ni and ZnO. There are thus two stages in the process that lead to two modes of pore formation. The first is associated with leaching of ZnO by alkali. The second is associated with the reduction of porous Ni1-xZnxO to give porous Ni and ZnO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An open-framework zinc phosphate, [C6N4H22][Zn6(PO4)4(HPO4)2] (I), with alternating inorganic and organic layers has been synthesized hydrothermally from a starting mixture of ZnO, HCl, H3PO4, H2C2O4, and triethylenetetramine. Single-crystal data for I: monoclinic, space GROUP =P21/c (No. 14), a=9.881(1), b=16.857(1), c=8.286(1) Å, β=96.7(1)°, V=1370.8(1) Å3, Z=2, R1=0.06, and wR2=0.13 [1408 observed reflections with I>2σ(I)]. The structure of I comprises a network of ZnO4, PO4, and PO3(OH) tetrahedra forming one-dimensional tubes. The tubes, in turn, are linked via oxygen atoms forming macroanionic inorganic layers with eight-membered apertures. The one-dimensional tube-like architecture in I is a novel feature worthy of note.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard free energies of formation of zinc aluminate and chromite were determined by measuring the oxygen potential over a solid CuZn alloy, containing 10 at.−% Zn, in equilibrium with ZnO, ZnAl2O4+Al2O3(χ) and ZnCr2O4+Cr2O3, in the temperature range 700–900°C. The oxygen potential was monitored by means of a solid oxide galvanic cell in which a Y2O3 ThO2 pellet was sandwiched between a CaOZrO2 crucible and tube. The temperature dependence of the free energies of formation of the interoxidic compounds can be represented by the equations, The heat of formation of the spinels calculated from the measurements by the “Second Law method” is found to be in good agreement with calorimetrically determined values. Using an empirical correlation for the entropy of formation of cubic spinel phases from oxides with rock-salt and corundum structures and the measured high temperature cation distribution in ZnAl2O4, the entropy of transformation of ZnO from wurtzite to rock-salt structure is evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of Mg doping in ZnO is investigated through structural, electrical, and optical properties. Zn1−xMgxO (0<×<0.3) thin films were deposited on Si (100) and corning glass substrates using multimagnetron sputtering. Investigations on the structural properties of the films revealed that the increase in Mg concentration resulted in phase evolution from hexagonal to cubic phase. The temperature dependent study of dielectric constant at different frequencies exhibited a dielectric anomaly at 110 °C. The Zn0.7Mg0.3O thin films exhibited a well-defined polarization hysteresis loop with a remnant polarization of 0.2 μC/cm2 and coercive field of 8 kV/cm at room temperature. An increase in the band gap with an increase in Mg content was observed in the range of 3.3–3.8 eV for x = 0–0.3. The average transmittance of the films was higher than 90% in the wavelength region λ = 400–900 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the growth kinetics of nanoclusters in solution. There are two generic factors that drive growth: (a) reactions that produce the nanomaterial; and (b) diffusion of the nanomaterial due to chemical-potential gradients. We model the growth kinetics of ZnO nanoparticles via coupled dynamical equations for the relevant order parameters, We study this model both analytically and numerically. We find that there is a crossover in thenanocluster growth law: from L(t) similar to t(1/2) in the reaction-controlled regime to L(t) t(1/3) in the diffusion-controlled regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports investigation of Na2O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of free-standing flexible inorganic/organic hybrid structures by exfoliating ZnO nanostructured films from the flat indium tin oxide (ITO)/silicon/sapphire substrates using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). Strong interaction between ZnO and PEDOT: PSS and the thermomechanical response of PEDOT: PSS are the key issues for the exfoliation to prevail. The performance of the free-standing hybrid structures as rectifiers and photodetectors is better as compared to ITO supported hybrid structures. It is also shown that device properties of hybrid structures can be tuned by using different electrode materials. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729550]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO nanoparticles (ZnO NPs) prepared by microwave heating technique are used to modify a gold electrode (ZnO/Au) for the hydrazine detection study. The synthesized product is well characterized by various techniques. Detailed electrochemical investigation of the oxidation of hydrazine on the ZnO/Au electrode in 0.02 M phosphate buffer solution (PBS) of pH 7.4 was carried out. A very low detection limit of 66 nM (S/N=4) and a wide linearity in current for a concentration range from 66.0X10-3 to 415 mu M was achieved by amperometry. The electrode was found to be stable for over a month when preserved in PBS.