1000 resultados para ZN DIFFUSION
Resumo:
Diffusion tensor imaging (DTI) studies have identified changes in white matter tracts in schizophrenia patients and those at high risk of transition. Schizotypal samples represent a group on the schizophrenia continuum that share some aetiological risk factors but without the confounds of illness. The aim of the current study was to compare tract microstructural coherence as measured by
fractional anisotropy (FA) between 12 psychometrically defined schizotypes and controls. We investigated bilaterally the uncinate and arcuate fasciculi (UF and AF) via a probabilistic tractography algorithm (PICo), with FA values compared between groups. Partial correlations were also examined between measures of subclinical hallucinatory/delusional experiences and FA values. High schizotypes
were found to have significantly higher FA values in bilateral UF only, but failed to reach significance in each hemisphere. In the whole sample there was a positive correlation between increasing FA values and measures of hallucinatory experience in the right AF. These findings suggest subtle changes in microstructural coherence are present in schizotypes. Correlations between mild hallucinatory experience and increasing FA values could indicate increasing coherence could be associated with symptom formation.
Resumo:
We extend the collective atomic recoil lasing (CARL) model including the effects of friction and diffusion forces acting on the atoms due to the presence of optical molasses fields. The results from this model are consistent with those from a recent experiment by Kruse [ Phys. Rev. Lett. 91, 183601 (2003) ]. In particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear analysis we show that the backscattered field and the bunching evolve to a steady state, in contrast to the nonstationary behavior of the standard CARL model. For a proper choice of the parameters, this steady state can be superfluorescent.
Resumo:
We discuss a scheme to relate the phase diffusion dynamics of the micromaser field to the measured atomic population statistics. This can allow us to measure the linewidth of the micromaser spectrum and to solve a relevant decoherence problem in cavity quantum electrodynamics. The main steps are (i) a suitable preparation of the cavity field state to generate coherences, (ii) the transfer of information on the dynamics of field coherences to probe atoms by the action of an external resonant coherent field and (iii) the derivation of the phase diffusion rate, hence the micromaser linewidth, from the measured population statistics of the probe atoms. The method can be applied even in the presence of trapping states, where peculiar linewidth oscillations are expected for increasing pump rate, due to the quantum nature of the micromaser field.
Resumo:
We propose a realistic scheme for measuring the micromaser linewidth by monitoring the phase diffusion dynamics of the cavity field. Our strategy consists of exciting an initial coherent state with the same photon number distribution as the micromaser steady-state field, singling out a purely diffusive process in the system dynamics. After the injection of a counterfield, measurements of the population statistics of a probe atom allow us to derive the micromaser linewidth in all ranges of the relevant parameters, establishing experimentally the distinctive features of the micromaser spectrum due to the discreteness of the electromagnetic field.
Resumo:
The electrochemical reduction of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) at zinc microelectrodes in the [C(4)mPyrr][NTf2] ionic liquid was investigated via cyclic voltammetry. The reduction was found to occur via an EC type mechanism, where p-BrC6H4NO2 is first reduced by one electron, quasi-reversibly, to yield the corresponding radical anion. The radical anions then react with the Zn electrode to form arylzinc products. Introduction of carbon dioxide into the system led to reaction with the arylzinc species, fingerprinting the formation of the latter. This method thus demonstrates a proof-of-concept of the formation of functionalised arylzinc species.
Resumo:
Background: Seaweeds are good sources of dietary fibre, which can influence glucose uptake and glycemic control.Objective: To investigate and compare the in vitro inhibitory activity of different extracts from Undaria pinnatifida (Wakame), Himanthalia elongata (Sea spaghetti) and Porphyra umbilicalis (Nori) on α-glucosidase activity and glucose diffusion.Methods: The in vitro effects chloroform-, ethanol- and water-soluble extracts of the three algae were assayed on α- glucosidase activity and glucose diffusion through membrane. Principal Components Analysis (PCA) was applied to identify patterns in the data and to discriminate which extract will show the most proper effect.Results: Only water extracts of Sea spaghetti possessed significant in vitro inhibitory effects on α-glucosidase activity (26.2% less mmol/L glucose production than control, p < 0.05) at 75 min. PCA distinguished Sea spaghetti effects, supporting that soluble fibre and polyphenols were involved. After 6 h, Ethanol-Sea spaghetti and water-Wakame extracts exerted the highest inhibitory effects on glucose diffusion (65.0% and 60.2% vs control, respectively). This extracts displayed the lowest slopes for glucose diffusion-time lineal adjustments (68.2% and 62.8% vs control, respectively).Conclusions: The seaweed hypoglycemic effects appear multi-faceted and not necessarily concatenated. According to present results, ethanol and water extracts of Sea spaghetti, and water extracts of Wakame could be useful for the development of functional foods with specific hypoglycemic properties.
Resumo:
Reactivity of supported gold catalysts is a hot topic in catalysis for many years. This communication reports an investigation on the dissociation of molecular hydrogen at the perimeter sites of Au/TiO2 and the spillover of hydrogen atoms from the gold to the support using density functional theory calculations. It is found that the heterolytic dissociation is favoured in comparison with homolytic dissociation of molecular hydrogen at the perimeter sites. However, the surface oxygen of the rutile TiO2(110) surface at these sites can be readily passivated by the formed OH, suggesting that further dissociation of molecular hydrogen may occur at pure gold sites.
Resumo:
Using first principles calculations for O vacancy diffusion on CeO2(111), we locate a surface diffusion mechanism, the two-step O vacancy exchange one, which is more favored than the most common hopping mechanism. By analyzing the results, we identify quantitatively the physical origin of why the two-step exchange mechanism is preferred.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Fe XXV, Co XXVI, Ni XXVII, Cu XXVIII and Zn XXIX. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are listed for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 7.7 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, for some transitions, are also discussed. Finally, discrepancies between the present results of effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Resumo:
Pinus sylvestris seedlings infected with either the ectomycorrhizal (ECM) fungus Paxillus involutus or Suillus variegatus were exposed to a range of Cd or Zn concentrations. This was done to investigate the relationship between the sensitivity of ECM fungi and their host plants over a wide range of concentrations. P involutus ameliorated the toxicity of Cd and Zn to P. sylvestris with respect to root length, despite significant inhibition of ECM infection levels by Cd (Cd EC50 [effective concentration which inhibits ECM infection by 50%] values were: P. involutus 3.7 μg g-1 Cd; S. variegatus 2.3 μg g-1 Cd). ECM infection by P. involutus also decreased Cd and Zn transport to the plant shoots at potentially toxic concentrations and also influenced the proportion of Zn transported to the roots and shoots, with a higher proportion retained in the roots of the seedlings. ECM infection did increase host biomass production, but this was not affected by the presence of Cd or Zn. Root and shoot biomass production by P. sylvestris, in both the presence and absence of ECM fungi, was unaffected by Cd and Zn at all concentrations tested.
Resumo:
The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.
Resumo:
With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.