969 resultados para Wood chemical properties


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inland wetlands are valuable natural resources intimately associated with the hydrologic cycle. This study was designed to (1) investigate vegetation distribution and selected physical and chemical properties of wetland and bordering upland soils and the interface between the two, and (2) provide the ground truth necessary for the identification and delineation of deciduous wetland forests using false-color infrared (FCIR) imagery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Membranes are essential for the integrity and function of the cell. The collective property of the lipid bilayer is critical in providing an optimal functioning environment for membrane proteins. The simple yet well-characterized bacterium Escherichia coli serves an ideal model system to study the function of specific lipids since its lipid content can be easily manipulated. The most abundant lipid in E. coli membrane is phosphatidylethanolamine (PE, 70-80%). A PE-lacking E. coli mutant displays a complex mixture of deficient phenotypes, suggesting a profound role for PE in different aspects of cell function. A novel role of PE as a topological and functional determinant for membrane proteins has been established using lactose permease (LacY) as a model protein. PE is found to be required for energy-dependent uphill transport process of LacY. In PE-lacking membranes, LacY undergoes a dramatic conformational change, and the first half of the protein adopts an inverted topology with respect to the bilayer plane. ^ The work reported here was initiated to understand the molecular properties of lipids that enable their function as topological and functional determinants for membrane proteins. A glycolipid, monoglucosyldiacylglycerol (MGlcDAG) which shares physicochemical similarities with PE, was introduced to PE-lacking E. coli membranes. The introduction of MGlcDAG suppresses many of the PE-deficient phenotypes, and in particular supports the function and native topology of LacY. ^ The lipid-sensitive topogenic signals encoded in the amino acid sequence of LacY were also identified. Native LacY adopts an inverted topology when synthesized without PE, but mutation of specific acidic residues in the cytoplasmic extra-membrane domains can prevent this inversion and supports a native topological organization of LacY in PE-lacking membranes. These results suggest that it is the interplay between the collective charge properties of the lipid bilayer and extra-membrane loops of protein that determines the final orientation of transmembrane domains. By comparing the similarities as well as differences between these two lipids, we established how specific physical and chemical properties of lipids influence various cell functions and elucidated the molecular basis for the novel role of lipids in determining membrane protein topology. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tillage system and crop rotation have a significant, long-term effect on soil productivity and soil quality components such as soil carbon and other soil physical, biological, and chemical properties. In addition, both tillage and crop rotation have effects on weed and soil disease control. There is a definite need for well-defined, long-term tillage and crop rotation studies across the different soils and climate conditions in the state. The objective of this study was to evaluate the long-term effects of different tillage systems and crop rotations on soil productivity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tillage system and crop rotation have a major long-term effect on soil productivity and soil quality components such as soil carbon and other soil physical, biological, and chemical properties. In addition, both tillage and crop rotation have effects on weed and soil disease control. There is a need for well-defined, longterm tillage and crop rotation studies across the different soils and climate conditions in the state. The objective of this study was to evaluate the long-term effects of different tillage systems and crop rotations on soil productivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Sea Ice Mass Balance in the Antarctic (SIMBA) experiment was conducted from the RVIB N.B. Palmer in September and October 2007 in the Bellingshausen Sea in an area recently experiencing considerable changes in both climate and sea ice cover. Snow and ice properties were observed at 3 short-term stations and a 27-day drift station (Ice Station Belgica, ISB) during the winter-spring transition. Repeat measurements were performed on sea ice and snow cover at 5 ISB sites, each having different physical characteristics, with mean ice (snow) thicknesses varying from 0.6 m (0.1 m) to 2.3 m (0.7 m). Ice cores retrieved every five days from 2 sites and measured for physical, biological, and chemical properties. Three ice mass-balance buoys (IMBs) provided continuous records of snow and ice thickness and temperature. Meteorological conditions changed from warm fronts with high winds and precipitation followed by cold and calm periods through four cycles during ISB. The snow cover regulated temperature flux and controlled the physical regime in which sea ice morphology changed. Level thin ice areas had little snow accumulation and experienced greater thermal fluctuations resulting in brine salinity and volume changes, and winter maximum thermodynamic growth of ~0.6 m in this region. Flooding and snow-ice formation occurred during cold spells in ice and snow of intermediate thickness. In contrast, little snow-ice formed in flooded areas with thicker ice and snow cover, instead nearly isothermal, highly permeable ice persisted. In spring, short-lived cold air episodes did not effectively penetrate the sea ice nor overcome the effect of ocean heat flux, thus favoring net ice thinning from bottom melt over ice thickening from snow-ice growth, in all cases. These warm ice conditions were consistent with regional remote sensing observations of earlier ice breakup and a shorter sea ice season, more recently observed in the Bellingshausen Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

n the framework of the FRUELA project, two oceanographic surveys were conducted by R/V Hespérides in the eastern Bellingshausen Sea, western basin of the Bransfield Strait and Gerlache Strait area during December 1995 and January 1996. The main hydrographic structures of the study domain were the Southern Boundary of the ACC and the Bransfield Front. The characteristics and zonation of local water masses are discussed in terms of temperature, salinity, dissolved oxygen, nutrient and inorganic carbon concentrations. Concentration intervals for water mass labelling, on the basis of chemical parameters in addition to the common theta/S-based classification, are defined. Silicate seems to be a very good discriminator for local water masses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este trabajo se caracterizaron las propiedades químicas del horizonte A de los suelos desarrollados a partir de distintos materiales originarios, sobre los cuales habitan bosques de Austrocedrus chilensis. Se seleccionaron cinco sitios, ubicados en el Valle 16 de Octubre y en el Parque Nacional Los Alerces de la Provincia del Chubut, Argentina. De cada sitio se tomaron muestras compuestas del horizonte A para la caracterización de las propiedades químicas. Todos los suelos analizados presentaron elevados contenidos de materia orgánica y nitrógeno. Los suelos originados a partir de materiales glaciarios presentaron los máximos valores de bases de intercambio, capacidad de intercambio catiónico y contenido de fósforo, diferenciándose significativamente de los suelos volcánicos. Dentro de los suelos volcánicos se detectaron diferencias en función de la granulometría del material: los suelos derivados de ceniza (< 2mm) tendieron a presentar mayores valores de capacidad de intercambio catiónico y bases de intercambio que los suelos de pumita (> 2mm).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este estudio tuvo por objetivo caracterizar la fertilidad química del suelo superficial nueve meses después de la ocurrencia de fuegos en dos tipos de formaciones del bosque andino patagónico: Nothofagus antarctica y Austrocedrus chilensis. El área de estudio se centró en un sector de suelos de ceniza volcánica que fue afectado por el incendio denominado La Colisión (Chubut, Argentina, febrero 2008) y posteriormente cubierto por ceniza volcánica proveniente del volcán Chaitén (mayo 2008). Se tomaron muestras compuestas de suelo mineral a dos profundidades (0-5 cm y 5-10 cm) en un sector de bosque de N. antarctica y un sector de bosque de A. chilensis, considerando tres niveles de afectación por fuego (control no quemado, poco quemado, muy quemado). En las muestras más superficiales (i.e., 0-5 cm) hubo aumentos significativos de pH y conductividad eléctrica, y disminución de los contenidos de materia orgánica, nitrógeno total, CIC y sodio, como consecuencia del fuego. Las muestras de 5-10 cm evidenciaron disminución de materia orgánica y nitrógeno total y aumento de azufre. El mayor contenido de azufre en los bosques quemados y el aumento observado de fósforo en suelos alofanizados con bajo grado de afectación por fuego, podrían ser beneficiosos para la recuperación de la vegetación.