977 resultados para Wills (Islamic law)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amoungst the three spiny lobster species in southern Iranian waters, Panulirus homarus is the only commercial species with a total landings of 20-45 tons per year indicating a decrease in both landings and CPIJE in recent years. Fishing has been regulated according to the no. of fisherman and effort, and trap ha's replaced the gillnef since 1994. Fishing is carried out along the rocky shores of Chah-Bahar region through different landing places by local fisherman for a period of about two months. Most of catch is exported mainly frozen. This research was sposored by the Fisheries Research Dept. and aimed to work on the population dynamics and stock assessment in order to stablish a better understandings of the stock and hence a proper management in this region. Sampling was done for. 10 successive months in _5 major landing places from 1994 to 1995 with no sampling during the monsoon period through June to July. Althogethere, 8500 specimen were collected and the biometry was done accordings to the sex, region and month. Average total length, total weight and carapace length was obtained 216mm., 452 gr. and 75mm. respectively. Total length-weight relationship of both sexes was calculated and follows the cubic law. Regression coefficients for both sexes was 2.8231, males 2.9616, total females 2.7490, berried females 2.6611- and non-berried females

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, and considers elastic recovery during unloading. The model was validated experimentally through impact testing of glass-carbon hybrid braided composite panels. Specimens were mounted in a support frame and the contact force was inferred from the deceleration of the impactor, measured by high-speed photography. A Finite Element analysis of the panel and support frame assembly was performed to compute the modal responses. The new contact model performed well in predicting the peak forces and impact durations for moderate energy impacts (15 J), where contact stresses locally exceed the linear elastic limit and damage may be deemed to have occurred. C-scan measurements revealed substantial damage for impact energies in the range of 30-50 J. For this regime the new model predictions might be improved by characterisation of the contact law hysteresis during the unloading phase, and a modification of the elastic vibration response in line with damage levels acquired during the impact. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the power absorbed by a linear oscillator when excited by white noise base acceleration depends only on the mass of the oscillator and the spectral density of the base motion. This places an upper bound on the energy that can be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the damping factor. It is shown here that the same result applies to any multi-degree-of-freedom nonlinear system that is subjected to white noise base acceleration: for a given spectral density of base motion the total power absorbed is proportional to the total mass of the system. The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous value of the state vector. The result is derived analytically by several different approaches, and numerical results are presented for an example two-degree-of-freedom-system with various combinations of linear and nonlinear damping and stiffness. © 2013 The Author.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dugdale-Barenblatt model is used to analyze the adhesion of graded elastic materials at the nanoscale with Young's modulus E varying with depth z according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remains a constant, where E-0 is a referenced Young's modulus, k is the gradient exponent and c(0) is a characteristic length describing the variation rate of Young's modulus. We show that, when the size of a rigid punch becomes smaller than a critical length, the adhesive interface between the punch and the graded material detaches due to rupture with uniform stresses, rather than by crack propagation with stress concentration. The critical length can be reduced to the one for isotropic elastic materials only if the gradient exponent k vanishes.