989 resultados para Western Indian Ocean


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The isotopic and micropaleontological deglacial records of three deep-sea cores from 44°S to 55°S have been dated by accelerator mass spectrometry. The available records did not allow accurate dating of the initiation of the deglaciation. By 13,000 years B.P., sea surface temperatures reached values similar to the present values. A cool oscillation abruptly interrupted this warm phase between 12,000 and 11,000 years B.P. Initiation of this cooling therefore preceded the northern hemisphere Younger Dryas by approximately 1000 years. Complete warming was reached by 10,000 years B.P., more or less synchronous with the northeast Atlantic Ocean.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New major, trace element, and isotope data (Pb, Sr, and Nd) reveal an impressive compositional variation in the basalts recovered from Site 834. Major element compositions span almost the entire range observed in basalts from the modern axial systems of the Lau Basin, and variations are consistent with low-pressure fractionation of a mid-ocean-ridge-basalt (MORB)-like parent, in which plagioclase crystallization has been somewhat suppressed. Trace element compositions deviate from MORB in all but one unit (Unit 7) and show enrichments in large-ion-lithophile elements (LILEs) relative to high-field-strength elements (HFSEs) more typically associated with island-arc magmas. The Pb-isotope ratios define linear trends that extend from the field of Pacific MORB to highly radiogenic values similar to those observed in rocks from the northernmost islands of the Tofua Arc. The Sr-isotope compositions also show significant variation, and these too project from radiogenic values back into the field for Pacific MORB. The variations in key trace element and isotopic features are consistent with magma mixing between two relatively mafic melts: one represented by Pacific MORB, and the other by a magma similar to those erupted on 'Eua when it was part of the original Tongan arc, or perhaps members of the Lau Volcanic Group (LVG). Based on our model, the most radiogenic compositions (Units 2 and 8) represent approximately 50:50 mixtures of these MORB and arc end-members. Magma mixing requires that both components are simultaneously available, and implies that melts have not shown a compositional progression from arc-like to MORB-like with extension at this locality. Rather, it is apparent that essentially pristine MORB can erupt as one of the earliest products of backarc initiation. Indeed, repetition of isotopic and trace element signatures with depth suggests that eruptions have been triggered by periodic injections of fresh MORB melts into the source regions of these magmas. The slow and almost amagmatic extension of the original arc complex envisaged to explain the observed chemistry is also consistent with the horst-and-graben topography of the western side of the Lau Basin. Given the similarities between basalts erupted at the modern Lau Basin spreading centers and MORB from the Indian Ocean, the overwhelming evidence for involvement of mantle similar to Pacific MORB in the petrogenesis of basalts from Site 834 is a new and important observation. It indicates that the original arc was underlain by asthenospheric material derived from the Pacific mantle convection cell, and that this has somehow been replaced by Indian Ocean MORB during the last ~5.5 Ma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 µg C/m**3/day. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg/m**2/day).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 189, five sites were drilled in the Tasmanian Seaway with the objective to constrain the paleoceanographic implications of the separation of Australia from Antarctica and to elucidate the paleoceanographic developments throughout the Neogene (Shipboard Scientific Party, 2001a, doi:10.2973/odp.proc.ir.189.101.2001). Sediments ranged from Cretaceous to Quaternary in age and provided the opportunity to describe the paleoenvironments in the Tasman Seaway prior to, during, and after the separation of Australia and Antarctica. This study will focus on postseparation distribution of calcareous nannofossils through the Miocene. Miocene sediments were recovered at all five Leg 189 sites, and four of these sites were studied in detail to determine the calcareous nannofossil biostratigraphy. Hole 1168A, located on the western Tasmanian margin, contains a fairly continuous Miocene record and could be easily zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. Analysis of sediments from Hole 1169A, located on the western South Tasman Rise, was not included in this study, as the recovered sediments were highly disturbed and unsuitable for further analysis (Shipboard Scientific Party, 2001c, doi:10.2973/odp.proc.ir.189.104.2001). Holes 1170A, 1171A, and 1171C are located on the South Tasman Rise south of the modern Subtropical Front (STF). They revealed incomplete Miocene sequences intersected by an early Miocene and late Miocene hiatus and could only be roughly zoned using the Okada and Bukry zonation. Similarly, Hole 1172A, located on the East Tasman Plateau, contains a Miocene sequence with a hiatus in the early Miocene and in the late Miocene and could only be roughly zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. This study aims to improve calcareous nannofossil biostratigraphic resolution in this sector of the mid to high southern latitudes. This paper will present abundance, preservation, and stratigraphic distribution of calcareous nannofossils through the Miocene and focus mainly on biozonal assignment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyzed 87Sr/86Sr ratios in foraminifera, pore fluids, and fish teeth for samples ranging in age from Eocene to Pleistocene from four Ocean Drilling Program sites distributed around the globe: Site 1090 in the Cape Basin of the Southern Ocean, Site 757 on the Ninetyeast Ridge in the Indian Ocean, Site 807 on the Ontong-Java Plateau in the western equatorial Pacific, and Site 689 on the Maud Rise in the Southern Ocean. Sr isotopic ratios for dated foraminifera consistently plot on the global seawater Sr isotope curve. For Sites 1090, 757, and 807 Sr isotopic values of the pore fluids are generally less radiogenic than contemporaneous seawater values, as are values for fossil fish teeth. In contrast, pore fluid 87Sr/86Sr values at Site 689 are more radiogenic than contemporaneous seawater, and the corresponding fish teeth also record more radiogenic values. Thus, Sr isotopic values preserved in fossil fish teeth are consistently altered in the direction of the pore fluid values; furthermore, there is a correlation between the magnitude of the offset between the pore fluids and the seawater curve, and the associated offset between the fish teeth and the seawater curve. These data suggest that the hydroxyfluorapatite of the fossil fish teeth continues to recrystallize and exchange Sr with its surroundings during burial and diagenesis. Therefore, Sr chemostratigraphy can be used to determine rough ages for fossil fish teeth in these cores, but cannot be used to fine-tune age models. In contrast to the Sr isotopic system, our Nd concentration data, combined with published isotopic and rare earth element data, suggest that fish teeth acquire Nd during early diagenesis while they are still in direct contact with seawater. The concentrations of Nd acquired at this stage are extremely high relative to the concentrations in surrounding pore fluids. As a result, Nd isotopes are not altered during burial and later diagenesis. Therefore, fossil fish teeth from a variety of marine environments preserve a reliable and robust record of deep seawater Nd isotopic compositions from the time of deposition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard vs. retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this we compared retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the FAO global elasmobranch landings by average retention rates and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. Our results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deep marine late Pleistocene sediments from Ocean Drilling Program Sulu Sea Site 769 contain a high-resolution record of paleoceanographic change in this strongly monsoonal climatic setting in the tropical western Pacific. Detailed time series of planktonic foraminifer (G.ruber; white variety) d18O, d13C, and bulk CaCO3 mass accumulation rate (MAR) were generated, spanning the last 750 k.y. Sedimentation rates in this portion of the record average 8.5 cm/k.y., and vary from 4 to 16 cm/k.y. Cross spectral analysis of the d18O and d13C time-series demonstrate that each contains increased variance at the primary orbital periodicities. The d18O record shows strong variability in the precessional-band and closely correlates with the SPECMAP d18O record and other high-resolution records. The dominance of a 23-k.y cycle in the d18O record agrees with other studies of the monsoon system in the Indian Ocean that have documented the importance of precessional insolation as a monsoon-forcing mechanism. In addition, d13C is strongly coherent, with d18O at a period of 41 k.y (obliquity), suggesting a connection between surface water CO2 chemistry in the Sulu Sea and high- latitude climatic change. The d18O and d13C time-series both contain increased spectral variance at a period of 30 k.y. Although the source of 30-k.y. variability is unknown, other studies have documented late Pleistocene Pacific Oceanographic variability with a period of 30 k.y. Major- and trace-metal analyses were performed on a second, less-detailed sample series to independently assess paleoproductivity changes and bottom-water conditions through time. Glacial periods are generally times of increased calcium carbonate and copper accumulation. The positive association between these independent indicators of paleoproductivity suggests an increase in productivity in the basin during most glacial episodes. Changing bottom-water redox conditions were also assessed using the geochemical data. Low concentrations of molybdenum throughout the record demonstrate that bottom waters at this site were never anoxic during the last 750 k.y. The bioturbated character of the sediments agrees with this interpretation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction > 63 µ, total carbonate content, carbonate in fine fractions < 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the < 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nutrition of 6 deep-sea ophiuroid species of the genus Amphiophiura in the Pacific and Indian Oceans has been studied. One species is a detritus-feeder while the others are carnivorous. All 6 are widespread in deep-sea eutrophic regions of both oceans. Carnivorous species are also necrophagous, feeding on dead fish, surface pteropods, and crustaceans. Fishes are consumed mainly in the Indian Ocean, pteropods in the Pacific. Thus, as shown by carnivorous Amphtophiura, the rain of dead surface pelagic organisms is one of the most important sources of food for a number of deep-sea bottom-dwelling invertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The book summarizes data on distribution and composition of sedimentary material suspended in waters of the Atlantic Ocean and its seas. Results of observations of Soviet and foreign expeditions are given. Distribution of suspended matter in sections across the ocean, as well as in the most studied seas are shown. New data on grain size, mineral and chemical composition of suspended matter are published. Summary of history of investigation of bottom sediments from the Atlantic Ocean from the first scientific cruises to the present is done. A brief description of sediment types in the ocean and a detailed description of Mediterranean Sea sediments are given.