990 resultados para Washington Navy Yard, Washington, D.C.
Resumo:
This paper investigates stochastic analysis of transit segment hourly passenger load factor variation for transit capacity and quality of service (QoS) analysis using Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia. It compares stochastic analysis to traditional peak hour factor (PHF) analysis to gain further insight into variability of transit route segments’ passenger loading during a study hour. It demonstrates that hourly design load factor is a useful method of modeling a route segment’s capacity and QoS time history across the study weekday. This analysis method is readily adaptable to different passenger load standards by adjusting design percentile, reflecting either a more relaxed or more stringent condition. This paper also considers hourly coefficient of variation of load factor as a capacity and QoS assessment measure, in particular through its relationships with hourly average and design load factors. Smaller value reflects uniform passenger loading, which is generally indicative of well dispersed passenger boarding demands and good schedule maintenance. Conversely, higher value may be indicative of pulsed or uneven passenger boarding demands, poor schedule maintenance, and/or bus bunching. An assessment table based on hourly coefficient of variation of load factor is developed and applied to this case study. Inferences are drawn for a selection of study hours across the weekday studied.
Resumo:
This study uses weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia •Stochastic analysis is compared to peak hour factor (PHF) analysis for insight into passenger loading variability •Hourly design load factor (e.g. 88th percentile) is found to be a useful method of modeling a segment’s passenger demand time-history across a study weekday, for capacity and QoS assessment •Hourly coefficient of variation of load factor is found to be a useful QoS and operational assessment measure, particularly through its relationship with hourly average load factor, and with design load factor •An assessment table based on hourly coefficient of variation of load factor is developed from the case study
Resumo:
Over 800 cities globally now offer bikeshare programs. One of their purported benefits is increased physical activity. Implicit in this claim is that bikeshare replaces sedentary modes of transport, particularly car use. This paper estimates the median changes in physical activity levels as a result of bikeshare in the cities of Melbourne, Brisbane, Washington, D.C., London, and Minneapolis/St. Paul. This study is the first known multi-city evaluation of the active travel impacts of bikeshare programs. To perform the analysis, data on mode substitution (i.e. the modes that bikeshare replaces) were used to determine the extent of shift from sedentary to active transport modes (e.g. when a car trip is replaced by bikeshare). Potentially offsetting these gains, reductions in physical activity when walking trips are replaced by bikeshare was also estimated. Finally a Markov Chain Monte Carlo analysis was conducted to estimate confidence bounds on estimated impacts on active travel given uncertainties in data sources. The results indicate that on average 60% of bikeshare trips replace sedentary modes of transport (from 42% in Minneapolis/St. Paul to 67% in Brisbane). When bikeshare replaces a walking trip, there is a reduction in active travel time because walking a given distance takes longer than cycling. Considering the active travel balance sheet for the cities included in this analysis, bikeshare activity in 2012 has an overall positive impact on active travel time. This impact ranges from an additional 1.4 million minutes of active travel for the Minneapolis/St. Paul bikeshare program, to just over 74 million minutes of active travel for the London program The analytical approach adopted to estimate bikeshare’s impact on active travel may act as the basis for future bikeshare evaluations or feasibility studies.
Resumo:
Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to \emph{catastrophic fusion} in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal.
Resumo:
This paper proposes an analytical Incident Traffic Management framework for freeway incident modeling and traffic re-routing. The proposed framework incorporates an econometric incident duration model and a traffic re-routing optimization module. The incident duration model is used to estimate the expected duration of the incident and thus determine the planning horizon for the re-routing module. The re-routing module is a CTM-based Single Destination System Optimal Dynamic Traffic Assignment model that generates optimal real-time strategies of re-routing freeway traffic to its adjacent arterial network during incidents. The proposed framework has been applied to a case study network including a freeway and its adjacent arterial network in South East Queensland, Australia. The results from different scenarios of freeway demand and incident blockage extent have been analyzed and advantages of the proposed framework are demonstrated.
Resumo:
This paper investigates the platoon dispersion model that is part of the 2010 Highway Capacity Manual that is used for forecasting downstream traffic flows for analyzing both signalized and TWSC intersections. The paper focuses on the effect of platoon dispersion on the proportion of time blocked, the conflicting flow rate, and the capacity flow rate for the major street left turn movement at a TWSC intersection. The existing HCM 2010 methodology shows little effect on conflicting flow or capacity for various distances downstream from the signalized intersection. Two methods are suggested for computing the conflicting flow and capacity of minor stream movements at the TWSC intersection that have more desirable properties than the existing HCM method. Further, if the existing HCM method is retained, the results suggest that the upstream signals model be dropped from the HCM method for TWSC intersections.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.
Resumo:
Digital Image
Resumo:
The paper presents initial findings from an Austroads funded project NT1782 Ability to Absorb Information through Electronic and Static Signs. The paper aims to investigate how easily messages displayed on co-located signs can be absorbed, and if drivers can absorb messages and take appropriate action without any adverse impact on the safety and efficiency of driving. Co-location of three types of signs under motorway conditions was investigated: direction signs (DS), variable message signs (VMS) and variable speed limits/lane control signs (VSL/LCS). The authors reviewed global wide practices and research evidence on different types of sign co-locations. It was found that dual co-location of VSL/LCS, VMS and/or DS is a practical arrangement which has been widely practised overseas and in Australia. Triple co-location of VSL/LCS, VMS and DS is also practised overseas but is still new to the Australian driving community. The NT1782 project also employed an advanced driving simulator (ADS) to further investigate the possible impacts of sign co-location on drivers’ responses in an emergency situation and there were no obviously adverse impacts have been identified from the ADS study. The authors consolidated all findings and concluded that although there is no clear evidence showing that triple co-location gives rise to riskier behaviour, this proposition should be viewed with caution. Further evaluation of triple co-location in a real-life setting is called for.
Resumo:
This paper develops theory that quantifies transit route passenger-relative load factor and distinguishes it from occupancy load factor. The ratio between these measures is defined as the load diversity coefficient, which as a single measure characterizes the diversity of passenger load factor between route segments according to the origin-destination profile. The relationship between load diversity coefficient and route coefficient of variation in occupancy load factor is quantified. Two tables are provided that enhance passenger capacity and quality of service (QoS) assessment regarding onboard passenger load. The first expresses the transit operator’s perspective of load diversity and the passengers’ perspective of load factor relative to the operator’s, across six service levels corresponding to ranges of coefficient of variation in occupancy load factor. The second interprets the relationships between passenger average travel time and each of passenger-relative load factor and occupancy load factor. The application of this methodology is illustrated using a case study of a premium radial bus route in Brisbane, Australia. The methodology can assist in benchmarking and decision making regarding route and schedule design. Future research will apply value of time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent aboard. This would also assist in transit service quality econometric modeling.
Resumo:
This poster introduces Passenger Relative Load Factor for a route or individual bus service as a capacity and quality of service measure, distinguishing it from Occupancy Load Factor. It introduces Load Diversity Coefficient as the ratio of Passenger Relative Load Factor to Occupancy Load Factor, and relates Load Diversity Coefficient to Coefficient of Variation in Occupancy Load Factor. It qualifies the operator’s and passengers’ perspectives of load factor based on Coefficient of Variation in Occupancy Load Factor along a route. A case study using weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia illustrates the methodology. The compendium paper also qualifies the operator’s and passengers’ perspectives of these load factors along with Passengers’ Average Travel Time for capacity and quality of service assessment.
Resumo:
Background Excessive speed is a primary contributing factor to young novice road trauma, including intentional and unintentional speeds above posted limits or too fast for conditions. The objective of this research was to conduct a systematic review of recent investigations into novice drivers’ speed selection, with particular attention to applications and limitations of theory and methodology. Method Systematic searches of peer-reviewed and grey literature were conducted during September 2014. Abstract reviews identified 71 references potentially meeting selection criteria of investigations since the year 2000 into factors that influence (directly or indirectly) actual speed (i.e., behaviour or performance) of young (age <25 years) and/or novice (recently-licensed) drivers. Results Full paper reviews resulted in 30 final references: 15 focused on intentional speeding and 15 on broader speed selection investigations. Both sets identified a range of individual (e.g., beliefs, personality) and social (e.g., peer, adult) influences, were predominantly theory-driven and applied cross-sectional designs. Intentional speed investigations largely utilised self-reports while other investigations more often included actual driving (simulated or ‘real world’). The latter also identified cognitive workload and external environment influences, as well as targeted interventions. Discussion and implications Applications of theory have shifted the novice speed-related literature beyond a simplistic focus on intentional speeding as human error. The potential to develop a ‘grand theory’ of intentional speeding emerged and to fill gaps to understand broader speed selection influences. This includes need for future investigations of vehicle-related and physical environment-related influences and methodologies that move beyond cross-sectional designs and rely less on self-reports.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.