964 resultados para Vulnerable populations
Resumo:
Five community-based cross-sectional surveys of malaria morbidity and associated risk factors in remote riverine populations in northwestern Brazil showed average parasite rates of 4.2% (thick-smear microscopy) and 14.4% (polymerase chain reaction [PCR]) in the overall population, with a spleen rate of 13.9% among children 2-9 years of age. Plasmodium vivax was 2.8 times more prevalent than P. falciparum, with rare instances of P. malariae and mixed-species infections confirmed by PCR; 9.6% of asymptomatic subjects had parasitemias detected by PCR. Low-grade parasitemia detected by PCR only was a risk factor for anemia, after controlling for age and other covariates. Although clinical and subclinical infections occurred in all age groups, the risk of infection and disease decreased significantly with increasing age, after adjustment for several covariates in multilevel logistic regression models. These findings suggest that the continuous exposure to hypo- or mesoendemic malaria may induce significant anti-parasite and anti-disease immunity in native Amazonians.
Complexity and anisotropy in host morphology make populations less susceptible to epidemic outbreaks
Resumo:
One of the challenges in epidemiology is to account for the complex morphological structure of hosts such as plant roots, crop fields, farms, cells, animal habitats and social networks, when the transmission of infection occurs between contiguous hosts. Morphological complexity brings an inherent heterogeneity in populations and affects the dynamics of pathogen spread in such systems. We have analysed the influence of realistically complex host morphology on the threshold for invasion and epidemic outbreak in an SIR (susceptible-infected-recovered) epidemiological model. We show that disorder expressed in the host morphology and anisotropy reduces the probability of epidemic outbreak and thus makes the system more resistant to epidemic outbreaks. We obtain general analytical estimates for minimally safe bounds for an invasion threshold and then illustrate their validity by considering an example of host data for branching hosts (salamander retinal ganglion cells). Several spatial arrangements of hosts with different degrees of heterogeneity have been considered in order to separately analyse the role of shape complexity and anisotropy in the host population. The estimates for invasion threshold are linked to morphological characteristics of the hosts that can be used for determining the threshold for invasion in practical applications.
Resumo:
Predictors of random effects are usually based on the popular mixed effects (ME) model developed under the assumption that the sample is obtained from a conceptual infinite population; such predictors are employed even when the actual population is finite. Two alternatives that incorporate the finite nature of the population are obtained from the superpopulation model proposed by Scott and Smith (1969. Estimation in multi-stage surveys. J. Amer. Statist. Assoc. 64, 830-840) or from the finite population mixed model recently proposed by Stanek and Singer (2004. Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 1119-1130). Predictors derived under the latter model with the additional assumptions that all variance components are known and that within-cluster variances are equal have smaller mean squared error (MSE) than the competitors based on either the ME or Scott and Smith`s models. As population variances are rarely known, we propose method of moment estimators to obtain empirical predictors and conduct a simulation study to evaluate their performance. The results suggest that the finite population mixed model empirical predictor is more stable than its competitors since, in terms of MSE, it is either the best or the second best and when second best, its performance lies within acceptable limits. When both cluster and unit intra-class correlation coefficients are very high (e.g., 0.95 or more), the performance of the empirical predictors derived under the three models is similar. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study covers a period when society changed from a pre-industrial agricultural society to a post-industrial service-producing society. Parallel with this social transformation, major population changes took place. In this study, we analyse how local population changes are affected by neighbouring populations. To do so we use the last 200 years of local population change that redistributed population in Sweden. We use literature to identify several different processes and spatial dependencies in the redistribution between a parish and its surrounding parishes. The analysis is based on a unique unchanged historical parish division, and we use an index of local spatial correlation to describe different kinds of spatial dependencies that have influenced the redistribution of the population. To control inherent time dependencies, we introduce a non-separable spatial temporal correlation model into the analysis of population redistribution. Hereby, several different spatial dependencies can be observed simultaneously over time. The main conclusions are that while local population changes have been highly dependent on the neighbouring populations in the 19th century, this spatial dependence have become insignificant already when two parishes is separated by 5 kilometres in the late 20th century. Another conclusion is that the time dependency in the population change is higher when the population redistribution is weak, as it currently is and as it was during the 19th century until the start of industrial revolution.