990 resultados para Virtual power
Resumo:
[spa] La adaptación al EEES ha implicado una reestructuración de los estudios universitarios promoviendo, entre otros, el uso de una evaluación continuada de los aprendizajes y de herramientas docentes virtuales en los nuevos grados. Estos cambios también pueden aplicarse en el posgrado, aunque hasta el momento, son pocas las experiencias al respecto. El presente trabajo muestra la opinión y los resultados obtenidos de los estudiantes de una asignatura de posgrado de un Máster Oficial Universitario URV-UB en el que se llevó a cabo evaluación continuada y se utilizó el Campus Virtual (CV) como herramienta de aprendizaje y participación activa. La aplicación del proyecto (2007PID/UB-14) se llevó a cabo en 4 fases: elaboración del aula, diseño de encuestas dirigidas a los estudiantes para obtener su opinión sobre la evaluación continuada y sus conocimientos en el uso de plataformas virtuales de forma previa al curso, gestión diaria del aula y seguimiento de las actividades propuestas y finalmente, evaluación del proyecto a través de indicadores cualitativos y cuantitativos derivados de las encuestas y de la propia aplicación virtual. Al inicio del curso la mayoría (93,75%) de los estudiantes prefería evaluación continuada y al final de éste el 100% estuvieron de acuerdo con el tipo de evaluación realizado. Respecto al CV, los estudiantes realizaron todas las actividades de autoevaluación voluntarias. La puntuación sobre la utilidad de todos los recursos del aula del CV fue muy elevada, siendo máxima la obtenida por los ejercicios de autoevaluación. En global, los estudiantes otorgaron al aula una puntuación de 8,1 sobre 10.
Resumo:
[spa] La adaptación al EEES ha implicado una reestructuración de los estudios universitarios promoviendo, entre otros, el uso de una evaluación continuada de los aprendizajes y de herramientas docentes virtuales en los nuevos grados. Estos cambios también pueden aplicarse en el posgrado, aunque hasta el momento, son pocas las experiencias al respecto. El presente trabajo muestra la opinión y los resultados obtenidos de los estudiantes de una asignatura de posgrado de un Máster Oficial Universitario URV-UB en el que se llevó a cabo evaluación continuada y se utilizó el Campus Virtual (CV) como herramienta de aprendizaje y participación activa. La aplicación del proyecto (2007PID/UB-14) se llevó a cabo en 4 fases: elaboración del aula, diseño de encuestas dirigidas a los estudiantes para obtener su opinión sobre la evaluación continuada y sus conocimientos en el uso de plataformas virtuales de forma previa al curso, gestión diaria del aula y seguimiento de las actividades propuestas y finalmente, evaluación del proyecto a través de indicadores cualitativos y cuantitativos derivados de las encuestas y de la propia aplicación virtual. Al inicio del curso la mayoría (93,75%) de los estudiantes prefería evaluación continuada y al final de éste el 100% estuvieron de acuerdo con el tipo de evaluación realizado. Respecto al CV, los estudiantes realizaron todas las actividades de autoevaluación voluntarias. La puntuación sobre la utilidad de todos los recursos del aula del CV fue muy elevada, siendo máxima la obtenida por los ejercicios de autoevaluación. En global, los estudiantes otorgaron al aula una puntuación de 8,1 sobre 10.
Resumo:
We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of a Poisson equation in an infinite planar domain whose boundary is an array of circular pads of radius ", and we deal with the singular limit Ɛ → 0 case. In comparison with approximations that appear in the electronic engineering literature, our formula is more complete since we have obtained terms up to order Ɛ15. A procedure will be presented to compute all the successive terms, which can be interpreted as using multipole solutions of equations involving spatial derivatives of functions. To deduce the formula we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and of the Gauss constant G
Resumo:
Participants in an immersive virtual environment interact with the scene from an egocentric point of view that is, where there bodies appear to be located rather than from outside as if looking through a window. People interact through normal body movements, such as head-turning,reaching, and bending, and within the tracking limitations move through the environment or effect changes within it in natural ways.
Resumo:
Combined Heat and Power (CHP) refers to the onsite production of electricity and thermal energy from the same fuel source. Integrating power and thermal energy production is more efficient than separate generating systems and used in the right situation can yield several benefits.
Resumo:
Combined Heat and Power (CHP) refers to the onsite production of electricity and thermal energy from the same fuel source. Integrating power and thermal energy production is more efficient than separate generating systems and used in the right situation can yield several benefits.
Resumo:
We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant"s virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3C4) negativity were clearly observed when the virtual hand was threatened as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.
Resumo:
This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.
Resumo:
In the rubber hand illusion tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first person perspective. For half the participants the VB was consistent in posture and movement with their own body, and in the other half there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared to the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full virtual body. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity - with proprioception and tactile sensations on the real body integrated with the visual presence of the virtual body. The results are interpreted in the framework of a"body matrix" recently introduced into the literature.
Resumo:
Individuals with vestibular dysfunction may experience visual vertigo (VV), in which symptoms are provoked or exacerbated by excessive or disorientating visual stimuli (e.g. supermarkets). VV can significantly improve when customized vestibular rehabilitation exercises are combined with exposure to optokinetic stimuli. Virtual reality (VR), which immerses patients in realistic, visually challenging environments, has also been suggested as an adjunct to VR to improve VV symptoms. This pilot study compared the responses of sixteen patients with unilateral peripheral vestibular disorder randomly allocated to a VR regime incorporating exposure to a static (Group S) or dynamic (Group D) VR environment. Participants practiced vestibular exercises, twice weekly for four weeks, inside a static (Group S) or dynamic (Group D) virtual crowded square environment, presented in an immersive projection theatre (IPT), and received a vestibular exercise program to practice on days not attending clinic. A third Group D1 completed both the static and dynamic VR training. Treatment response was assessed with the Dynamic Gait Index and questionnaires concerning symptom triggers and psychological state. At final assessment, significant betweengroup differences were noted between Groups D (p = 0.001) and D1 (p = 0.03) compared to Group S for VV symptoms with the former two showing a significant 59.2% and 25.8% improvement respectively compared to 1.6% for the latter. Depression scores improved only for Group S (p = 0.01) while a trend towards significance was noted for Group D regarding anxiety scores (p = 0.07). Conclusion: Exposure to dynamic VR environments should be considered as a useful adjunct to vestibular rehabilitation programs for patients with peripheral vestibular disorders and VV symptoms.
Resumo:
A financial power of attorney (FPOA) is a document authorizing someone else (an agent) to manage your finances on your behalf if you (the principal) become incapacitated and are unable to make financial management decisions for yourself. If you become unable to decide for yourself and you have not prepared a financial power of attorney, a court proceeding will likely be required before a loved one will be able to assume authority over at least some of your financial affairs. Your FPOA can be drafted to go into effect as soon as you sign it or it can become effective at a later date or only in the case that a physician certifies that you have become incapacitated.
Resumo:
A health care power of attorney (HC-POA) is a document authorizing an attorney-in-fact (your designated agent) to make health care decisions on your behalf if you (the principal) are unable, in the judgment of your attending physician, to make health care decisions. Health care is defined as any care, treatment, service or procedure required to maintain, diagnose or treat a physical or mental condition. Through your HC-POA, you may authorize someone else to consent, refuse or withdraw consent to health care on your behalf. The attorney-in-fact is permitted to make only health care-related decisions on your behalf. In exercising this authority, the attorney-in-fact must act consistently with your desires (as stated in the HC-POA document).
Resumo:
A health care power of attorney (HC-POA) is a document authorizing an attorney-in-fact (your designated agent) to make health care decisions on your behalf if you (the principal) are unable, in the judgment of your attending physician, to make health care decisions. Health care is defined as any care, treatment, service or procedure required to maintain, diagnose or treat a physical or mental condition. Through your HC-POA, you may authorize someone else to consent, refuse or withdraw consent to health care on your behalf.
Resumo:
A reinforcement learning (RL) method was used to train a virtual character to move participants to a specified location. The virtual environment depicted an alleyway displayed through a wide field-of-view head-tracked stereo head-mounted display. Based on proxemics theory, we predicted that when the character approached within a personal or intimate distance to the participants, they would be inclined to move backwards out of the way. We carried out a between-groups experiment with 30 female participants, with 10 assigned arbitrarily to each of the following three groups: In the Intimate condition the character could approach within 0.38m and in the Social condition no nearer than 1.2m. In the Random condition the actions of the virtual character were chosen randomly from among the same set as in the RL method, and the virtual character could approach within 0.38m. The experiment continued in each case until the participant either reached the target or 7 minutes had elapsed. The distributions of the times taken to reach the target showed significant differences between the three groups, with 9 out of 10 in the Intimate condition reaching the target significantly faster than the 6 out of 10 who reached the target in the Social condition. Only 1 out of 10 in the Random condition reached the target. The experiment is an example of applied presence theory: we rely on the many findings that people tend to respond realistically in immersive virtual environments, and use this to get people to achieve a task of which they had been unaware. This method opens up the door for many such applications where the virtual environment adapts to the responses of the human participants with the aim of achieving particular goals.
Resumo:
In body ownership illusions participants feel that a mannequin or virtual body (VB) is their own. Earlier results suggest that body ownership over a body seen from behind in extra personal space is possible when the surrogate body is visually stroked and tapped on its back, while spatially and temporal synchronous tactile stimulation is applied to the participant's back. This result has been disputed with the claim that the results can be explained by self-recognition rather than somatic body ownership. We carried out an experiment with 30 participants in a between-groups design. They all saw the back of a VB 1.2 m in front, that moved in real-time determined by upper body motion capture. All felt tactile stimulation on their back, and for 15 of them this was spatially and temporally synchronous with stimulation that they saw on the back of the VB, but asynchronous for the other 15. After 3 min a revolving fan above the VB descended and stopped at the position of the VB neck. A questionnaire assessed referral of touch to the VB, body ownership, the illusion of drifting forwards toward the VB, and the VB drifting backwards. Heart rate deceleration (HRD) and the amount of head movement during the threat period were used to assess the response to the threat from the fan. Results showed that although referral of touch was significantly greater in the synchronous condition than the asynchronous, there were no other differences between the conditions. However, a further multivariate analysis revealed that in the visuotactile synchronous condition HRD and head movement increased with the illusion of forward drift and decreased with backwards drift. Body ownership contributed positively to these drift sensations. Our conclusion is that the setup results in a contradiction-somatic feelings associated with a distant body-that the brain attempts to resolve by generating drift illusions that would make the two bodies coincide.