998 resultados para Virology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Also called: Baker Institute for Animal Health annual report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"January 1981."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each vol. issued in two parts, A and B, alternating semiannually

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-infected B cell lymphomas are resistant to apoptosis during cancer development and treatment with therapies. The molecular controls that determine why EBV infection causes apoptosis resistance need further definition. EBV-positive and EBV-negative BJA-B B cell lymphoma cell lines were used to compare the expression of selected apoptosis-regulating Bcl-2 and caspase proteins in EBV-related apoptosis resistance, after 8 hr or 18-24 hr etoposide treatment (80 muM). Apoptosis was quantified using morphology and verified with Hoechst 33258 nuclear stain and electron microscopy. Fluorescence activated cell sorting (FACS) was used to analyse effects on cell cycle of the EBV infection as well as etoposide treatment. Anti-apoptotic Bcl-2 and Bcl-XL, pro-apoptotic Bax, caspase-3 and caspase-9 expression and activation were analysed using Western immunoblots and densitometry. EBV-positive cultures had significantly lower levels of apoptosis in untreated and etoposide-treated cultures in comparison with EBV-negative cultures (p < 0.05). FACS analysis indicated a strong G2/M block in both cell sublines after etoposide treatment. Endogenous Bcl-2 was minimal in the EBV-negative cells in comparison with strong expression in EBV-positive cells. These levels did not alter with etoposide treatment. Bcl-XL was expressed endogenously in both cell lines and had reduced expression in EBV-negative cells after etoposide treatment. Bax showed no etoposide-induced alterations in expression. Pro-caspase-9 and -3 were seen in both EBV-positive and -negative cells. Etoposide induced cleavage of caspase-9 in both cell lines, with the EBV-positive cells having proportionally less cleavage product, in agreement with their lower levels of apoptosis. Caspase-3 cleavage occurred in the EBV-negative etoposide-treated cells but not in the EBV-positive cells. The results indicate that apoptosis resistance in EBV-infected B cell lymphomas is promoted by an inactive caspase-3 pathway and elevated expression of Bcl-2 that is not altered by etoposide drug treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epstein-Barr virus nuclear antigen (EBNA)-6 is essential for EBV-induced immortalization of primary human B-lymphocytes in vitro. Previous studies have shown that EBNA-6 acts as a transcriptional regulator of viral and cellular genes; however at present, few functional domains of the 140 kDa EBNA-6 protein have been completely characterized. There are five computer-predicted nuclear localization signals (NLS), four monopartite and one bipartite, present in the EBNA-6 amino acid sequence. To identify which of these NLS are functional, fusion proteins between green fluorescent protein and deletion constructs of EBNA-6 were expressed in HeLa cells, Each of the constructs containing at least one of the NLS was targeted to the nucleus of cells whereas a construct lacking all of the NLS was cytoplasmic. Site-directed mutation of these NLS demonstrated that only three of the NLS were functional, one at the N-terminal end (aa 72-80), one in the middle (aa 412-418) and one at the C-terminal end (aa 939-945) of the EBNA-6 protein.