974 resultados para Veterinary neurology.
Resumo:
Background: In 2008-09, evidence of Reston ebolavirus (RESTV) infection was found in domestic pigs and pig workers in the Philippines. With species of bats having been shown to be the cryptic reservoir of filoviruses elsewhere, the Philippine government, in conjunction with the Food and Agriculture Organization of the United Nations, assembled a multi-disciplinary and multi-institutional team to investigate Philippine bats as the possible reservoir of RESTV. Methods: The team undertook surveillance of bat populations at multiple locations during 2010 using both serology and molecular assays. Results: A total of 464 bats from 21 species were sampled. We found both molecular and serologic evidence of RESTV infection in multiple bat species. RNA was detected with quantitative PCR (qPCR) in oropharyngeal swabs taken from Miniopterus schreibersii, with three samples yielding a product on conventional hemi-nested PCR whose sequences differed from a Philippine pig isolate by a single nucleotide. Uncorroborated qPCR detections may indicate RESTV nucleic acid in several additional bat species (M. australis, C. brachyotis and Ch. plicata). We also detected anti-RESTV antibodies in three bats (Acerodon jubatus) using both Western blot and ELISA. Conclusions: The findings suggest that ebolavirus infection is taxonomically widespread in Philippine bats, but the evident low prevalence and low viral load warrants expanded surveillance to elaborate the findings, and more broadly, to determine the taxonomic and geographic occurrence of ebolaviruses in bats in the region. © 2015 Jayme et al.
Resumo:
The urban presence of flying-foxes (pteropid bats) in eastern Australia has increased in the last 20 years, putatively reflecting broader landscape change. The influx of large numbers often precipitates community angst, typically stemming from concerns about loss of social amenity, economic loss or negative health impacts from recently emerged bat-mediated zoonotic diseases such as Hendra virus and Australian bat lyssavirus. Local authorities and state wildlife authorities are increasingly asked to approve the dispersal or modification of flying-fox roosts to address expressed concerns, yet the scale of this concern within the community, and the veracity of the basis for concern are often unclear. We conducted an on-line survey to capture community attitudes and opinions on flying-foxes in the urban environment to inform management policy and decision-making. Analysis focused on awareness, concerns, and management options, and primarily compared responses from communities where flying-fox management was and was not topical at the time of the survey. While a majority of respondents indicated a moderate to high level of knowledge of both flying-foxes and Hendra virus, a substantial minority mistakenly believed that flying-foxes pose a direct infection risk to humans, suggesting miscommunication or misinformation, and the need for additional risk communication strategies. Secondly, a minority of community members indicated they were directly impacted by urban roosts, most plausibly those living in close proximity to the roost, suggesting that targeted management options are warranted. Thirdly, neither dispersal nor culling was seen as an appropriate management strategy by the majority of respondents, including those from postcodes where flying-fox management was topical. These findings usefully inform community debate and policy development and demonstrate the value of social analysis in defining the issues and options in this complex human - wildlife interaction. The mobile nature of flying-foxes underlines the need for a management strategy at a regional or larger scale, and independent of state borders.
Resumo:
Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
Resumo:
Indospicine toxicosis was reported in sheep, goats and cattle fed on Indigofera, a leguminous plant rich in indospicine. Recent death report on dogs as a result of dietary ingestion of indospicine contaminated camel meat has raised concern about the distribution of this toxin in camels fed on Indigofera. This in vitro study aimed at measuring the degradability of indospicine in Indigofera spicata by camel-foregut fluid and attempted at explaining indospicine accumulation in meat tissue. In the first experiment, in vitro dry matter digestibility and indospicine disappearance were evaluated by using foregut fluid from 15 feral camels. Foregut fluid was collected post mortem from a nearby abattoir. In the second experiment, a composite foregut fluid obtained from three feral camels was used to examine the time-dependent degradation of indospicine. Results indicated that 99 of the dietary indospicine was degraded after 48 h of incubation. The time-dependent degradation study showed rapid degradation (11 µg/h) during the first 18 h of incubation, followed by a much slower rate (2 µg/h) between 18-48 h. Results demonstrated the ability of the camel microbiota to degrade indospicine and suggest the presence of a by-pass mechanism that enables the toxin to escape degradation and reaches the intestine.
Preliminary investigation of some physiological responses of Bos indicus heifers to surgical spaying
Resumo:
Objective To determine the value of peripheral blood concentrations of cortisol, creatine phosphokinase (CPK), aspartate aminotransferase (AST), non-esterified fatty acids (NEFAs) and haptoglobin as indicators of welfare in Brahman heifers spayed by either the Willis dropped ovary technique (WDOT) or the flank laparotomy method. Design A total of 24, 2-year-old Brahman heifers were allocated to: crush (head-bail) restraint alone (Control, n = 5); crush restraint and ear-punch (Ear-punch, n = 5); crush restraint, WDOT spay and ear-punch (WDOT, n = 9); or crush restraint, elecrtoimmobilisation, flank spay and ear-punch (Flank; n = 5). Cattle were blood sampled frequently to 8 h, and then daily to day 4 and were monitored to 42 days post-procedure. Peripheral blood concentrations of bound and unbound cortisol, CPK, AST, NEFAs and haptoglobin were determined. Results Concentrations of plasma bound cortisol peaked in the spayed heifers 3-4 h post-procedure; values in the Flank (1603 nmol/L) and WDOT (1290 nmol/L) groups were similar and significantly greater (P < 0.05) than in the Controls (519 nmol/L). Flank heifers had elevated plasma haptoglobin levels to day 4 postprocedure. Liveweights were significantly lower in the spayed compared with the Control heifers at 21 and 42 days post-procedure, with liveweight gains also significantly reduced at day 21. Conclusions Bound cortisol responses in spayed heifers were elevated to 6 h post-procedure and similar in WDOT- and flank-spayed animals, indicating comparable levels of pain and stress. An inflammatory response, indicated by haptoglobin concentrations, was sustained for longer in Flank than in WDOT spayed heifers, suggesting longer-lasting adverse effects on welfare from flank spaying than WDOT spaying. © 2011 The State of Queensland (Department of Employment, Economic Development and Innovation). Australian Veterinary Journal © 2011 Australian Veterinary Association.
Resumo:
Castration of cattle using rubber rings is becoming increasingly popular due to the perceived ease of the procedure and greater operator safety when compared with surgical castration. Few comparative studies have investigated the effects of different castration methods and calf age on welfare outcomes, particularly in a tropical environment. Thirty Belmont Red (a tropically adapted breed), 3-month-old (liveweight 71–119 kg) and 30, 6-month-old (liveweight 141–189 kg) calves were assigned to a two age × three castration (surgical, ring and sham) treatment factorial study (Surg3, Surg6, Ring3, Ring6, Sham3 and Sham6, n = 10 for each treatment group). Welfare outcomes were assessed post-castration using: behaviour for 2 weeks; blood parameters (cortisol and haptoglobin concentrations) to 4 weeks; wound healing to 5 weeks; and liveweights to 6 weeks. More Surg calves struggled during castration compared with Sham and Ring (P < 0.05, 90 ± 7% vs. 20 ± 9% and 24 ± 10%) and performed more struggles (1.9 ± 0.2, 1.1 ± 0.3 and 1.1 ± 0.3 for Surg, Sham and Ring, respectively), suggesting that surgical castration caused most pain during performance of the procedure. A significant (P < 0.05) time × castration method × age interaction for plasma cortisol revealed that concentrations decreased most rapidly in Sham; the Ring6 calves failed to show reduced cortisol concentrations at 2 h post-castration, unlike other treatment groups. By 7 h post-castration, all treatment groups had similar concentrations. A significant (P < 0.01) interaction between time and castration method showed that haptoglobin concentrations increased slightly to 0.89 and 0.84 mg/mL for Surg and Ring, respectively over the first 3 days post-castration. Concentrations for Surg then decreased to levels similar to Sham by day 21 and, although concentrations for Ring decreased on day 7 to 0.76 mg/mL, they increased significantly on day 14 to 0.97 mg/mL before reducing to concentrations similar to the other groups (0.66 mg/mL) by day 21. Significantly (P < 0.05) more of the wounds of the 3-month compared with the 6-month calves scored as ‘healed’ at day 7 (74% vs. 39%), while more (P = 0.062) of the Surg than Ring scored as ‘healed’ at day 21 (60% vs. 29%). At day 14 there were significantly (P < 0.05) fewer healed wounds in Ring6 compared with other treatment groups (13% vs. 40–60%). Liveweight gain was significantly (P < 0.05) greater in 3-month (0.53 kg/day) than in 6-month calves (0.44 kg/day) and in Sham calves (P < 0.001, 0.54 kg/day), than in Ring (0.44 kg/day) and Surg (0.48 kg/day) calves. Overall, welfare outcomes were slightly better for Surg than Ring calves due to reduced inflammation and faster wound healing, with little difference between age groups.
Resumo:
Bats of the genus Pteropus (flying-foxes) are the natural host of Hendra virus (HeV) which periodically causes fatal disease in horses and humans in Australia. The increased urban presence of flying-foxes often provokes negative community sentiments because of reduced social amenity and concerns of HeV exposure risk, and has resulted in calls for the dispersal of urban flying-fox roosts. However, it has been hypothesised that disturbance of urban roosts may result in a stress-mediated increase in HeV infection in flying-foxes, and an increased spillover risk. We sought to examine the impact of roost modification and dispersal on HeV infection dynamics and cortisol concentration dynamics in flying-foxes. The data were analysed in generalised linear mixed models using restricted maximum likelihood (REML). The difference in mean HeV prevalence in samples collected before (4.9%), during (4.7%) and after (3.4%) roost disturbance was small and non-significant (P = 0.440). Similarly, the difference in mean urine specific gravity-corrected urinary cortisol concentrations was small and non-significant (before = 22.71 ng/mL, during = 27.17, after = 18.39) (P= 0.550). We did find an underlying association between cortisol concentration and season, and cortisol concentration and region, suggesting that other (plausibly biological or environmental) variables play a role in cortisol concentration dynamics. The effect of roost disturbance on cortisol concentration approached statistical significance for region, suggesting that the relationship is not fixed, and plausibly reflecting the nature and timing of disturbance. We also found a small positive statistical association between HeV excretion status and urinary cortisol concentration. Finally, we found that the level of flying-fox distress associated with roost disturbance reflected the nature and timing of the activity, highlighting the need for a ‘best practice’ approach to dispersal or roost modification activities. The findings usefully inform public discussion and policy development in relation to Hendra virus and flying-fox management.
Resumo:
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.
Resumo:
Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
Resumo:
Campylobacter occur in fresh retail poultry products as a result of their colonization of the gastro-intestinal tract of chickens during growth. Feed additives could be used for suppression of Campylobacter levels in the chickens prior to slaughter. To address this opportunity, feed manufacturers are targeting natural antimicrobials from plant material as new forms of consumer-accepted feed additives. However, to be practical, these natural antimicrobials must be effective at low concentrations. The current study has validated an improved laboratory method to study minimal inhibitory concentrations of plant compounds and their combinations against Campylobacter. The assay was shown to be valid for testing lipid-soluble and water-soluble plant extracts and byproducts from the food industry. The study screened 29 extracts or plant-derived compounds and their mixtures for anti-Campylobacter activity using a laboratory assay. Combinations of oregano, lactic acid, and sorghum byproduct showed effective synergy in anti-Campylobacter activity. The synergies allowed a large reduction in the concentration of the individual compounds needed to kill the bacteria with an 80% reduction in concentration being achieved for oregano essential oil. The assay gives rise to further opportunities for the testing of a greater range of combinations of plant-derived compounds and other natural antimicrobials. The method is robust, simple, and easily automated, and it could be used to adjust the cost of feed formulations by reducing costs associated with antimicrobial feed additives.