967 resultados para Unsaturated bonds
Resumo:
In this work, theoretical and experimental infrared spectra of fatty acid methyl esters (FAME) contained in soybean biodiesel were analyzed seeking the assignments of the relevant vibrational modes to characterize crude soybean oil and soybean biodiesel. The results showed the usefulness of infrared spectra for monitoring saturated and unsaturated compounds as well as impurities (mainly glycerol) in raw samples. This is the first step toward proposing an efficient molecular spectroscopy routine to certify biodiesel fuel.
Resumo:
In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H2 ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes.
Resumo:
It is through the application of an electronic partition approach called Symmetry-Adapted Perturbation Theory (SAPT) that the nature of hydrogen bonds and van der Waals interactions can be unveiled according to the contribution of electrostatic, charge transfer, exchange repulsion, polarization, and dispersion terms. Among these, electrostatic partition governs the formation of the hydrogen bonds, whose energies are arguably high. However, the weakness of the interaction strength is caused by dispersion forces, whose contribution decisively lead to the stabilization of complexes formed via van der Waals interactions.
Resumo:
In this work, the fatty acid quantity and composition of six freshwater microalgae and soybean grains was determined by direct transesterification and gas chromatography analysis. The results showed that all the freshwater microalgae species presented a higher quantity of fatty acid than soybean grain. Choricystis sp. (A) provides 115% more fatty acids per gram of biomass than soybean grain. With regard to the fatty acid composition, Choricystis sp. (A) showed an adequate proportion of saturated and unsaturated fatty acids, with lower quantity of polyunsaturated fatty acids and, akin to some marine microalgae, constitutes an alternative raw material for biodiesel production.
Resumo:
Proteases catalyze the hydrolysis of peptide bonds of proteins and peptides to produce smaller peptides and free amino acids. These enzymes are involved in physiologic processes such as blood coagulation and cellular death, and are related to life cycle of several viruses, such as hepatitis C, dengue, and AIDS. These features make most of proteases very important therapeutic targets for new pharmaceutical compounds. The development of peptidemimetics with improved pharmacokinetic properties is driving extensive research in the field of viral protease inhibitors. The present paper aims to highlight the design and synthesis of peptidemimetics that are able to inhibit viral proteases related to hepatitis C, dengue, and AIDS.
Resumo:
This article presents a theoretical study of the molecular properties of trimolecular clusters of CnHm∙∙∙HCN∙∙∙HX formed by the ϖ∙∙∙H and n∙∙∙H hydrogen bonds. The interaction strengths of these interactions are in line with the variations in s-character, and independently, the red-shift rise whether stronger or weaker bound systems are carried out. This behavior was justified via NBO analysis and supported by Bent´s rule, wherein the greater variations in s-character of X are in good agreement with larger red-shifts and vice-versa. To conclude, the refinement of the supermolecule approach and NBO binding energies also corroborate in this regard.
Resumo:
Life on earth depends on the absorption and conversion of solar energy into chemical bonds, i.e. photosynthesis. In this process, sun light is employed to oxidize water into oxygen and reducing equivalents used to produce fuels. In artificial photosynthesis, the goal is to develop relatively simple systems able to mimic photosynthetic organisms and promote solar-to-chemical conversion. The aim of the present review was to describe recent advances in the application of coordination compounds as catalysts in some key reactions for artificial photosynthesis, such as water splitting and CO2 reduction.