976 resultados para Type I error probability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to construct an artificial fetal membrane (FM) by combination of human amniotic epithelial stem cells (hAESCs) and a mechanically enhanced collagen scaffold containing encapsulated human amniotic stromal fibroblasts (hASFs). Such a tissue-engineered FM may have the potential to plug structural defects in the amniotic sac after antenatal interventions, or to prevent preterm premature rupture of the FM. The hAESCs and hASFs were isolated from human fetal amniotic membrane (AM). Magnetic cell sorting was used to enrich the hAESCs by positive ATP-binding cassette G2 selection. We investigated the use of a laminin/fibronectin (1:1)-coated compressed collagen gel as a novel scaffold to support the growth of hAESCs. A type I collagen gel was dehydrated to form a material mimicking the mechanical properties and ultra-structure of human AM. hAESCs successfully adhered to and formed a monolayer upon the biomimetic collagen scaffold. The resulting artificial membrane shared a high degree of similarity in cell morphology, protein expression profiles, and structure to normal fetal AM. This study provides the first line of evidence that a compacted collagen gel containing hASFs could adequately support hAESCs adhesion and differentiation to a degree that is comparable to the normal human fetal AM in terms of structure and maintenance of cell phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268±28 g/l) compared with control healthy subjects (mean 131±10 g/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150g/l) compared with human serum (median 6g/l) or human milk (median 25g/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a development from material introduced in recent work, we discuss the interconnections between ternary rings of operators (TROs) and right C*-algebras generated by JC*-triples, deducing that every JC*-triple possesses a largest universally reversible ideal, that the universal TRO commutes with appropriate tensor products and establishing a reversibility criterion for type I JW*-triples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human amniotic membrane (AM) is a tissue of fetal origin and has proven to be clinically useful as a biomaterial in the management of various ocular surface disorders including corneal stem cell transplantation. However, its success rate displays a degree of clinical unpredictability. We suggest that the measured variability inAMstiffness offers an explanation for the poor clinical reproducibility when it is used as a substrate for stem cell expansion and transplantation. Corneal epithelial stem cells were expanded upon AM samples possessing different mechanical stiffness. To investigate further the importance of biological substrate stiffness on cell phenotype we replaced AM with type I collagen gels of known stiffness. Substrate stiffness was measured using shear rheometry and surface topography was characterized using scanning electron microscopy and atomic force microscopy. The differentiation status of epithelial cells was examined using RT-PCR, immunohistochemistry and Western blotting. The level of corneal stem cell differentiation was increased in cells expanded upon AM with a high dynamic elastic shear modulus and cell expansion on type I collagen gels confirmed that the level of corneal epithelial stem cell differentiation was related to the substrate’s mechanical properties. In this paper we provide evidence to show that the preparatory method of AM for clinical use can affect its mechanical properties and that these measured differences can influence the level of differentiation within expanded corneal epithelial stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli O86:K61 has long been associated with outbreaks of infantile diarrhea in humans and with diarrheal disease in many animal species. Studies in the late 1990s identified E. coli 086:K61 as the cause of mortality in a variety of wild birds, and in this study, 34 E. coli 086:K61 isolates were examined. All of the isolates were nonmotile, but most elaborated at least two morphologically distinct surface appendages that were confirmed to be type I and curli fimbriae. Thirty-three isolates were positive for the eaeA gene encoding a gamma type of intimin. No phenotypic or genotypic evidence was obtained for elaboration of Shiga-like toxins, but most isolates possessed the gene coding for the cytolethal distending toxin. Five isolates were selected for adherence assays performed with tissue explants and HEp-2 cells, and four of these strains produced attaching and effacing lesions on HEp-2 cells and invaded the cells, as determined by transmission electron microscopy. Two of the five isolates were inoculated orally into 1-day-old specific-pathogen-free chicks, and both of these isolates colonized, invaded, and persisted well in this model. Neither isolate produced attaching and effacing lesions in chicks, although some pathology was evident in the alimentary tract. No deaths were recorded in inoculated chicks. These findings are discussed in light of the possibility that wild birds are potential zoonotic reservoirs of attaching and effacing E. coli.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermal transition is observed in the peptide amphiphile C16-KTTKS (TFA salt) from nanotapes at 20 degrees C to micelles at higher temperature (the transition temperature depending on concentration). The formation of extended nanotapes by the acetate salt of this peptide amphiphile, which incorporates a pentapeptide from type I procollagen, has been studied previously [V. Castelletto et al., Chem. Commun., 2010, 46, 9185]. Here, proton NMR and SAXS provide evidence for the TFA salt spherical micelles at high temperature. The phase behavior, with a Krafft temperature separating insoluble aggregates (extended nanotapes) at low temperature from the high temperature micellar phase resembles that for conventional surfactants, however this has not previously been reported for peptide amphiphiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile-to-mobile (M-to-M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M-to-M multiple-input multiple-output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double-correlated Rayleigh-and-Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three-dimensional (3D) M-to-M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal-to-noise ratio per receive antenna in closed-form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the x–y plane, angle between the x–y plane and the antenna array orientation, and degree of scattering in the x–y plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinearity of high-power amplifiers (HPAs) has a crucial effect on the performance of multiple-input-multiple-output (MIMO) systems. In this paper, we investigate the performance of MIMO orthogonal space-time block coding (OSTBC) systems in the presence of nonlinear HPAs. Specifically, we propose a constellation-based compensation method for HPA nonlinearity in the case with knowledge of the HPA parameters at the transmitter and receiver, where the constellation and decision regions of the distorted transmitted signal are derived in advance. Furthermore, in the scenario without knowledge of the HPA parameters, a sequential Monte Carlo (SMC)-based compensation method for the HPA nonlinearity is proposed, which first estimates the channel-gain matrix by means of the SMC method and then uses the SMC-based algorithm to detect the desired signal. The performance of the MIMO-OSTBC system under study is evaluated in terms of average symbol error probability (SEP), total degradation (TD) and system capacity, in uncorrelated Nakagami-m fading channels. Numerical and simulation results are provided and show the effects on performance of several system parameters, such as the parameters of the HPA model, output back-off (OBO) of nonlinear HPA, numbers of transmit and receive antennas, modulation order of quadrature amplitude modulation (QAM), and number of SMC samples. In particular, it is shown that the constellation-based compensation method can efficiently mitigate the effect of HPA nonlinearity with low complexity and that the SMC-based detection scheme is efficient to compensate for HPA nonlinearity in the case without knowledge of the HPA parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance.