962 resultados para Two variable oregonator model
Resumo:
Lettuce (Lactuca sativa L.) is the most commonly consumed leaf vegetable in the Brazilian diet, and it is a good source of vitamins and minerals. It is widely grown in the conventional farming system. However, the hydroponic farming system has been gaining importance in the market, wining confidence from consumers, who are becoming increasingly more demanding on food quality. The objective of this study was to evaluate the performance of two lettuce cultivars on hydroponic and conventional farming systems for the production of fresh mass (FM) and dry mass (DM), photosynthesis, contents of chlorophyll and anthocyanin. The following two experiments were carried out: hydroponics farming (HF) and conventional farming (CF), performed in protect and unprotect environments, respectively, in Florianópolis, SC. Mimosa Verde cultivar (MV) showed greater fresh mass than Mimosa Roxa (MR), in both farming systems and the two cultivars presented better performance in the hydroponic system (287.7 g MV and 139.1 g MR) than the conventional system (129.7 g MV and 111.8 g MR). Mimosa Verde cultivar presented lower average contents of total chlorophyll (7.7 mg g-¹ FM) than Mimosa Roxa (11.8 mg g-¹FM), and both cultivars displayed higher means for this variable in the hydroponic farming system. Mimosa Roxa presented higher contents of anthocyanin in the conventional system (88.24 mg g-¹ FM) than the ones in the hydroponic system (36.89 mg g-¹ FM). The best results for CO2 net assimilation rate regarded to photosyntheticaly active photon flux density were found in the hydroponic system, for both lettuce cultivars. Variation in the contents of chlorophyll were also found. Those variations were higher in the protected system than in the hydroponic system and contents of anthocyanin were higher in the conventional system.
Resumo:
Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.