988 resultados para Tumor, Immunsystem, transkriptionelle Regulation, MHC
Resumo:
Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIP(L), a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIP(L) expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIP(L) protein and fully reversed FLIP(L)-mediated TRAIL resistance. Moreover, interference with endogenous FLIP(L) and FLIP(S) significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.
Resumo:
We have recently reported that the PD-1 and CTLA4 signaling pathways are active in both effector and regulatory T cells, causing profound immune dysfunctions in the tumor microenvironment. In line with this notion, the dual blockade of PD-1- and CTLA4-conveyed signals may exert robust therapeutic effects. Here, we discuss the mechanisms possibly underlying such a synergic interaction.
Resumo:
Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.
Resumo:
Ligands of the tumor necrosis factor superfamily (TNFSF) (4-1BBL, APRIL, BAFF, CD27L, CD30L, CD40L, EDA1, EDA2, FasL, GITRL, LIGHT, lymphotoxin alpha, lymphotoxin alphabeta, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL) bind members of the TNF receptor superfamily (TNFRSF). A comprehensive survey of ligand-receptor interactions was performed using a flow cytometry-based assay. All ligands engaged between one and five receptors, whereas most receptors only bound one to three ligands. The receptors DR6, RELT, TROY, NGFR, and mouse TNFRH3 did not interact with any of the known TNFSF ligands, suggesting that they either bind other types of ligands, function in a ligand-independent manner, or bind ligands that remain to be identified. The study revealed that ligand-receptor pairs are either cross-reactive between human and mouse (e.g. Tweak/Fn14, RANK/RANKL), strictly species-specific (GITR/GITRL), or partially species-specific (e.g. OX40/OX40L, CD40/CD40L). Interestingly, the receptor binding patterns of lymphotoxin alpha and alphabeta are redundant in the human but not in the mouse system. Ligand oligomerization allowed detection of weak interactions, such as that of human TNF with mouse TNFR2. In addition, mouse APRIL exists as two different splice variants differing by a single amino acid. Although human APRIL does not interact with BAFF-R, the shorter variant of mouse APRIL exhibits weak but detectable binding to mouse BAFF-R.
Resumo:
Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.
Resumo:
The aim of this paper is to discover the origins of utility regulation in Spain, and to analyse, from a microeconomic perspective, its characteristics and the impact of regulation on consumers and utilities. Madrid and the Madrilenian utilities are taken as a case study. The electric industry in the period studied was a natural monopoly2. Each of the three phases of production, generation, transmission and distribution, had natural monopoly characteristics. Therefore, the most efficient form to generate, transmit and distribute electricity was the monopoly because one firm can produce a quantity at a lower cost than the sum of costs incurred by two or more firms. A problem arises because when a firm is the single provider it can charge prices above the marginal cost, at monopoly prices. When a monopolist reduces the quantity produced, price increases, causing the consumer to demand less than the economic efficiency level, incurring a loss of consumer surplus. The loss of the consumer surplus is not completely gained by the monopolist, causing a loss of social surplus, a deadweight loss. The main objective of regulation is going to be to reduce to a minimum the deadweight loss. Regulation is also needed because when the monopolist fixes prices at marginal cost equal marginal revenue there would be an incentive for firms to enter the market creating inefficiency. The Madrilenian industry has been chosen because of the availability of statistical information on costs and production. The complex industry structure and the atomised demand add interest to the analysis. This study will also provide some light on the tariff regulation of the period which has been poorly studied and will complement the literature on the US electric utilities regulation where a different type of regulation was implemented.
Resumo:
Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
Dynamic assembly and disassembly of microtubules is essential for cell division, cell movements, and intracellular transport. In the developing nervous system, microtubule dynamics play a fundamental role during neurite outgrowth, elongation, and branching, but the molecular mechanisms involved are unknown. SCG10 is a neuron-specific protein that is membrane-associated and highly enriched in growth cones. Here we show that SCG10 binds to microtubules, inhibits their assembly, and can induce microtubule disassembly. We also show that SCG10 overexpression enhances neurite outgrowth in a stably transfected neuronal cell line. These data identify SCG10 as a key regulator of neurite extension through regulation of microtubule instability.
Resumo:
Little is known about the role of the transcription factor peroxisome proliferator-activated receptor (PPAR) beta/delta in liver. Here we set out to better elucidate the function of PPARbeta/delta in liver by comparing the effect of PPARalpha and PPARbeta/delta deletion using whole genome transcriptional profiling and analysis of plasma and liver metabolites. In fed state, the number of genes altered by PPARalpha and PPARbeta/delta deletion was similar, whereas in fasted state the effect of PPARalpha deletion was much more pronounced, consistent with the pattern of gene expression of PPARalpha and PPARbeta/delta. Minor overlap was found between PPARalpha- and PPARbeta/delta-dependent gene regulation in liver. Pathways upregulated by PPARbeta/delta deletion were connected to innate immunity and inflammation. Pathways downregulated by PPARbeta/delta deletion included lipoprotein metabolism and various pathways related to glucose utilization, which correlated with elevated plasma glucose and triglycerides and reduced plasma cholesterol in PPARbeta/delta-/- mice. Downregulated genes that may underlie these metabolic alterations included Pklr, Fbp1, Apoa4, Vldlr, Lipg, and Pcsk9, which may represent novel PPARbeta/delta target genes. In contrast to PPARalpha-/- mice, no changes in plasma free fatty acid, plasma beta-hydroxybutyrate, liver triglycerides, and liver glycogen were observed in PPARbeta/delta-/- mice. Our data indicate that PPARbeta/delta governs glucose utilization and lipoprotein metabolism and has an important anti-inflammatory role in liver. Overall, our analysis reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver.
Resumo:
Granuloma size is the variable most frequently used to evaluate the immunopathogenesis of schistosome infections. However, hepatic fibrosis is at the least an equally relevant variable. Hepatic fibrosis and the size of circumoval granulomas are frequently dissociated in experimental murine Schistosoma mansoni and S. japonicum infections. Virtually nothing is known of the immunoregulation of schistosomal hepatic fibrosis. This review notes many of the studies which have found discrepancies in granuloma volume and hepatic fibrosis, attempts to put them in perspective and to evaluate different methods of calculating changes in collagen synthesis or content
Resumo:
This paper examines statins competition in the Spanish pharmaceutical market, where prices are highly regulated, and simulates a situation in which there is unrestricted price competition. A nested logit demand model is estimated with a panel of monthly data for pharmaceuticals prescribed from 1997 to 2005. The simulation indicates that the regulation of prices is similar in its effects to cooperation among producers, since the regulated prices are close to those that would be observed in a scenario of perfect collusion. Freedom to set prices and a regulatory framework with appropriate incentives would result in a general reduction in prices and may make the current veiled competition in the form of discounts to pharmacists become more visible. The decrease in prices would be partially offset by an increase in consumption but the net effect would be an overall decrease in expenditure. The counterfactual set-up would also lead to important changes in the market shares of both manufacturers and active ingredients, and a reversal of generic drugs. Therefore, pro-competitive regulation would be welfare-enhancing but would imply winners and losers.
Resumo:
The production of Th1-type cytokines is associated with strong cell-mediated immunity while Th2-type cytokines are typically involved in the generation of humoral immune responses. In mice vaccinated a single time (1X) with attenuated cercariae of Schistosoma mansoni, the immunity induced is highly dependent on CD4+ T cells and IFN-gamma. In contrast, mice vaccinated multiple times (3X) have decreased IFN-gamma expression, develop a more dominant Th2-type cytokine response as well as protective antibodies which can passively transfer immunity to naive recipients. Previously, we demonstrated the ability of IL-12, a potent IFN-gamma-inducing cytokine to enhance (1X) schistosome cell-mediated immunity when administered during the period of immunization. More recently, we asked what effects IL-12 would have on the development humoral-based immunity. While multiply-immunized/saline-treated mice demonstrated a 70-80% reduction in parasite burden, 3X/IL-12-vaccinated animals displayed an even more striking >90% reduction in challenge infection, with many mice in the later group demonstrating complete protection. Analysis of pulmonary cytokine mRNA responses demonstrated that control challenged mice elicited a dominant Th2-type response, 3X/saline-vaccinated produced a mixed Th1/Th2-type cytokine response, while 3X/IL-12-immunized animals displayed a dominant Th1-type response. The IL-12-treated group also showed a marked reduction in total serum IgE and tissue eosinophilia while SWAP-specific IgG2a and IgG2b Abs were elevated. Interestingly, animals vaccinated with IL-12 also showed a highly significant increase in total Ig titers specific for IrV-5, a known protective antigen. More importantly, 3X/IL-12 serum alone, when transferred to naive mice reduced worm burdens by over 60% while 3X/saline serum transferred significantly less protection. Nevertheless, animals vaccinated in the presence of IL-12 also develop macrophages with enhanced nitric oxide dependent killing activity against the parasites. Together, these observations suggest that IL-12, initially described as an adjuvant for cell-mediated immunity, may also be used as an adjuvant for promoting both humoral and cell-mediated protective responses.
Resumo:
Background and aim: Neuropathic pain (NP) is a frequent and disabling disorder occurring as a consequence of a direct lesion of the nervous system and recurrently associated with a positive shift toward nervous system excitability. Peripheral nerve activity is mainly carried by voltage-gated sodium channels (VGSC), with Nav1.7 isoform being an important candidate since loss of function mutations of its gene is associated with congenital inability to experience pain. Interestingly, ubiquitin ligases from the Nedd4 family are well known proteins that regulate the turnover of many membrane proteins such as VGSC and we showed Nedd2-2 is downregualted in experimental models of chronic pain. The aim of this study was to investigate the importance of Nedd4-2 in the modulation of Nav1.7 at the membrane. Methods: In vitro: whole cell patch clamp on HEK293 cell line stably expressing Nav1.7 was used to record sodium currents (INa), where the peak current of INa reflects the quantity of functional Nav1.7 expressed at the membrane. The possibility that Nedd4-2 modulates the currents was assessed by investigating the effect of its cotransfection on INa. Biotinylation of cell surface was used to isolate membrane-targeted Nav1.7. Furthermore, as the interaction between Nedd4-2 and Nav isoforms was previously reported to rely on an xPPxYx sequence (PY-motif), we mutated this latter to study its impact in the specific interaction between Nav1.7 and Nedd4-2. GST-fusion proteins composed of the Nav1.7 c terminal 66 amino acids (wild-type or PY mutated) and GST were used to pull-down Nedd4-2 from lysates. Results: Co-transfection of Nav1.7 with Nedd4-2 reduced the Nav1.7 current amplitude by ~80% (n = 36, p <0.001), without modifying the biophysical properties of INa. In addition, we show that the quantity of Nav1.7 at the membrane was decreased when Nedd4-2 was present. This effect was dependent on the PY-motif since mutations in this sequence abolished the down-regulatory effect of Nedd4-2. The importance of this motif was further confirmed by pull down experiments since the PY mutant completely eliminate the interaction with Nedd4-2. Perspectives: Altogether, these results point to the importance of Nedd4-2 as a Nav1.7 regulator through cell surface modulation of this sodium channel. Further experiments in freshly dissociated neurons from wild type and Scn1bflox/Nedd4-2Cre mice are needed to confirm in vivo these preliminary data.