986 resultados para Trans-acting Factors
Resumo:
Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.
Resumo:
Contrary to the general assumption that photoreactions in crystals may not proceed with large molecular motions, a pedal-like motion prompted by electronic excitation is believed to be involved during the β-dimer formation from the crystals of the diamine double salt of trans-2,4-dichlorocinnamic acid and trans-1,2-diaminocyclohexane.
Resumo:
The Debye-Waller factors of 133Cs in three caesium halides at 4.2°K and of 129I ion in caesium iodide at 80°K are calculated and compared with experimental results.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
The structure of the by-product, obtained in the Diels-Alder condensation of maleic anhydride with β-trans-ocimene followed by distillation of the adduct formed, has been established as 2-isopropylidene-4-methyl-7-carboxy- ,3,3a,6,7,7a-hexahydroindanone (IVa) and the mechanism of its formation from the adduct (II) discussed. Some hitherto unreported reactions of the maleic anhydride adduct (II) and its derivatives are described. These throw light on the stereochemistry of the adduct and derived products.
Resumo:
By a series of reactions the Diels-Alder adduct IV of maleic anhydride and β-trans-Ocimene gave 1-hydroxy-1,4-dimethyl-7-hydroxymethyloctahydroindane (XII). Its further synthetic elaboration furnished 1,4-dimethyl-7-(2-ethoxycarbonyl-1-propenyl)-Δ1-octahydroindane of the valerenic acid skeleton.
Resumo:
Syntheses of the isomers of the C11 acid, 1(a),3(a)- dimethylcyclohexane-1 (e),2(e),3(e)-tricarboxylic acid (A) and 1(a),3(e)-dimethylcyclohexane-1(e),2(e),3(a)-tricarboxylic acid (B), the latter by two different routes, are reported. Two of the four possible isomers of the precursor triester, trimethyl 1-methylcyclohexane-1,2,3-tricarboxylate, on individual methylation followed by hydrolysis, gave the trans,meso-acid (A), identified by comparison with an authentic sample, and the cis,trans-form (B) whose structure and configuration were proved by comparison with a specimen obtained by the unambiguous and highly stereoselective second synthesis. This demonstrated that methylation of the triester isomers occurs stereospecifically and exclusively at C-3. In the second sequence, it has been possible to assign definite conformations to four key intermediates and the final product, directly from n.m.r. spectra, from changes in these spectra accompanying specific steps, and from chemical evidence. Comparison of the n.m.r. spectra of the isomeric triesters (A) and (B) has provided unequivocal proof of the accepted trans,meso configuration for the abietic acid degradation product (A).
Resumo:
The particle size and crystallite size of anatase increase markedly in the region of the crystal structure transformation. The unit cell of anatase seems to expand prior to the transformation to rutile. This expansion has been attributed to a displacive transformation of the type defined by Buerger. Smaller particle size and larger surface area seem to favour the transformation. The kinetics of the transformation of anatase prepared by the hydrolysis of titanium sulphate have been studied at different temperatures and are found to be considerably different from the kinetics of the transformation of pure anatase. The transformation becomes immeasurably slow below ∼695 ± 10°C compared to ∼610°C for pure anatase. An induction period is observed in the transformation of anatase obtained from sulphate hydrolysis and the duration decreases with increase in temperature. The activation energy is ∼120 kcal/mole, a value higher than that for the pure anatase-rutile transformation. The results have been interpreted in terms of the relative rates of nucleation and propagation processes. The activation energy for the nucleation process seems to be much larger than for the propagation process. The kinetics of the transformation of anatase samples doped with different amounts of sulphate ion impurity have also been studied and the transformation is found to be progressively decelerated with increase in the impurity concentration. The energy of activation for the transformation appears to increase progressively with increase in impurity concentration.
Resumo:
The in vitro incorporation of [3H]uridine into RNA and [3H]leucine into protein in slices of porcine thyroid was studied. Thyrotropin (10-500 mU/ml of medium), when added with [3H]uridine, inhibited incorporation into RNA, but as little as 10 mU of thyrotropin per ml stimulated incorporation of [3H]orotic acid into RNA. Uridine kinase (EC 2.7.1.48) was found to be inhibited in slices incubated with thyrotropin whereas UMP 5′ nucleotidase (EC 2.1.3.5) was not. Preincubation of slices with thyrotropin (5-50 mU/ml) led to enhanced incorporation of subsequently added [3H]uridine and [3H]leucine. When slices were preincubated with long-acting thyroid stimulator-IgG (2.5 or 5 mg per ml of medium) incorporation of [3H]uridine and [3H]leucine was similarly enhanced, with the smaller concentration being more effective. Without preincubation these stimulatory effects were mimicked by 1 mM dibutyryl 3′,5′-AMP and, to a lesser extent, 1 mM 3′,5′-AMP. AMP and ATP also stimulated [3H]uridine incorporation in this system but only after more prolonged periods of incubation than were required for the other nucleotides. RNA polymerase (EC 2.7.7.6) activity measured in isolated thyroid nuclei had two components, one Mg2+-stimulated and the other requ ring Mn2+ and high salt content [0.4 M (NH4)2SO4]. These activities, and particularly the former, were enhanced if thyroid slices were incubated with thyrotropin (5-100 mU/ml of medium), 2.5 mg or 5.0 mg of long-acting thyroid stimulator-IgG per ml, or 1 mM dibutyryl 3′,5′-AMP, before isolatior of the nuclei and measurement of enzyme activities; 1 mM AMP, ADP, or 2′,3′-GMP had no influence. Added directly to the nuclei, thyrotropin, long-acting thyroid stimulator-IgG, and dibutyryl 3′,5′-AMP had no effect on RNA polymerase activities. These data are seen as affording evidence for mediation by 3′,5′-AMP of effects of thyrotropin and long-acting thyroid stimulator on thyroid RNA and protein synthesis, at least in part through an indirect stimulation of nuclear RNA polymerase activities.
Resumo:
The (overall trans) addition of hydrogen chloride to cyclohex-1- enecarbonitrile in anhydrous alcoholic media proceeds to give cis-2-chlorocyclohexanecarboxylate (together with some cis-2- chlorocyclohexanecarboxamide): no corresponding products with the trans-configuration are detectable. In anhydrous ether the addition proceeds to give a single isomer, presumably cis-, of 2-chlorocyclohexanecarbonitrile, indicating that the configuration of the products may not be equilibrium-controlled in alcoholic media. An examination of the steric factors indicates that the transition state for protonation of the presumed intermediate, 2-chlorocyclohexylidenemethylideneimine, leading to cis-product is favoured if interaction between the lateral π-orbital of the C-N double bond and the lone-pairs on the chlorine atom at the 2-position is large. Consideration of interactions in the transition states meets Zimmerman's criticism that invoking A1, 3 interaction existing in ground states to explain product configuration takes insufficient account of the Curtin-Hammett principle.
Resumo:
Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.
Resumo:
Reduction of trans-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XI) by lithium tri-t-butoxyaluminohydride gave trans-1β-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XII) which on lithium-liquid ammonia reduction gave trans-anti-1β-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XIII). Reduction of cis-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XV) by sodium borohydride gave cis-1α-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XVI) which on lithium-liquid ammonia reduction gave cis-syn-1α-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XVII).